Online citations, reference lists, and bibliographies.

An Augmented Visual Query Mechanism For Finding Patterns In Time Series Data

Eamonn J. Keogh, H. Hochheiser, B. Shneiderman
Published 2002 · Computer Science

Cite This
Download PDF
Analyze on Scholarcy
Share
Relatively few query tools exist for data exploration and pattern identification in time series data sets. In previous work we introduced Time-boxes. Timeboxes are rectangular, direct-manipulation queries for studying time-series datasets. We demonstrated how Timeboxes can be used to support interactive exploration via dynamic queries, along with overviews of query results and drag-and-drop support for query-by-example. In this paper, we extend our work by introducing Variable Time Timeboxes (VTT). VTTs are a natural generalization of Timeboxes, which permit the specification of queries that allow a degree of uncertainty in the time axis. We carefully motivate the need for these more expressive queries, and demonstrate the utility of our approach on several data sets.
This paper references
MIMSY: A System for Analyzing Time Series Data in the Stock Market Domain
W. G. Roth (1993)
10.1145/634067.634292
Sketching a graph to query a time-series database
M. Wattenberg (2001)
10.1007/BFb0054513
Indexing Time-Series Databases for Inverse Queries
A. Nanopoulos (1998)
10.2307/2983122
The Visual Display of Quantitative Information.
P. Fayers (1990)
10.1109/ICDE.1995.380415
Mining sequential patterns
R. Agrawal (1995)
Schwarzkopf Computational Geometry: Algorithms and Applications
M De Berg (2000)
10.1109/WISE.2000.882407
Visualization of linear time-oriented data: a survey
S. F. Silva (2000)
10.1145/288392.288399
Interactive visualization of serial periodic data
J. Carlis (1998)
10.1145/354401.354754
Jazz: an extensible zoomable user interface graphics toolkit in Java
Benjamin B. Bederson (2000)
Graphical summary of patient status. The Lancet
S Powsner (1994)
10.5860/choice.41-6653
Understanding Wall Street
Jeffrey B. Little (2004)
10.1109/52.311065
Reuse in Command-and-Control Systems
J. O'Connor (1994)
10.1016/B978-155860915-0/50039-1
Interactive Exploration of Time Series Data
H. Hochheiser (2003)
10.1145/191839.191925
Fast subsequence matching in time-series databases
C. Faloutsos (1994)
UCI Knowledge Discovery in Databases Archive
10.2307/1571646
The Visual Display of Quantitative Information
James W. Reidhaar (1983)
Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases
R. Agrawal (1995)
10.1145/312624.312676
Relevance feedback retrieval of time series data
Eamonn J. Keogh (1999)
10.1016/S0140-6736(94)91406-0
Graphical summary of patient status
S. Powsner (1994)
10.1080/716099686
The Visual Display of Quantitative Information
B. Marx (1985)
10.1109/52.329404
Dynamic queries for visual information seeking
B. Shneiderman (1994)
Querying Shapes of Histories
R. Agrawal (1995)
10.1109/INFVIS.1997.636793
Multidimensional detective
A. Inselberg (1997)
Finding Patterns in Time Series: A Dynamic Programming Approach
D. Berndt (1996)
10.1007/978-3-540-77974-2
Computational geometry: algorithms and applications
M. Berg (1997)



This paper is referenced by
10.1007/978-3-540-30132-5_159
Forecasting on Complex Datasets with Association Rules
M. Bertoli (2004)
10.1109/TVCG.2007.70415
Visual Methods for Analyzing Time-Oriented Data
W. Aigner (2008)
10.1109/VAST.2016.7883519
The semantics of sketch: Flexibility in visual query systems for time series data
M. Correll (2016)
10.3384/diss.diva-162220
Data Abstraction and Pattern Identification in Time-series Data
Prithiviraj K. Muthumanickam (2019)
10.1145/2396761.2398747
STFMap: query- and feature-driven visualization of large time series data sets
K. Candan (2012)
10.1007/978-3-642-39062-3_62
Combining Spatial and Temporal Information of Eye Movements in Goal-Oriented Tasks
M. Chen (2013)
10.1016/j.knosys.2012.12.011
Time series visualization based on shape features
Hailin Li (2013)
10.1057/ivs.2008.32
Visual Data Mining of Multimedia Data for Social and Behavioral Studies
Chen Yu (2009)
Time Series Data Mining Methods: A Review
Caroline Kleist (2015)
Advanced architecture for INTER- domain quality of service MONitoring, modelling and visualisation
S. Michaelis (2003)
10.1145/993176.993177
Dynamic query tools for time series data sets: timebox widgets for interactive exploration
H. Hochheiser (2004)
10.1109/CIDM.2013.6597219
How to extract meaningful shapes from noisy time-series subsequences?
Yanfei Kang (2013)
10.1016/J.JPROCONT.2016.05.007
An on-line SAX and HMM-based anomaly detection and visualization tool for early disturbance discovery in a dynamic industrial process
C. T. Yiakopoulos (2016)
DQB (Dynamic Query Band): 시계열 데이터의 효율적인 탐색을 위한 동적 쿼리 장치
조명수 (2009)
10.1016/J.BDR.2019.02.001
Visual Exploration of Geolocated Time Series with Hybrid Indexing
Georgios Chatzigeorgakidis (2019)
MODELS, TRENDS AND TOOLS
Dr. Ilango Velchamy (2015)
Dynamic query tools for time series data sets
HochheiserHarry (2004)
10.1057/palgrave.ivs.9500061
Dynamic Query Tools for Time Series Data Sets: Timebox Widgets for Interactive Exploration
H. Hochheiser (2004)
Dynamic Time Warping Algorithm Review
Pavel Senin (2008)
10.1016/j.jvlc.2003.06.003
Data mining on temporal data: a visual approach and its clinical application to hemodialysis
L. Chittaro (2003)
10.14279/DEPOSITONCE-1978
Prototypische Entwicklung einer Trend basierten Datenbank-Suchmaschine
J. Huss (2008)
10.1145/1622176.1622217
Relaxed selection techniques for querying time-series graphs
Christian Holz (2009)
10.1109/IV.2007.48
Everyday Life Discoveries: Mining and Visualizing Activity Patterns in Social Science Diary Data
K. Vrotsou (2007)
10.1109/FBIT.2007.76
Environmental Sensor Data Visualization for Aquafarm Monitoring
Eung-Kon Kim (2007)
TIME SERIES DATA MINING RESEARCH PROBLEM, ISSUES, MODELS, TRENDS AND TOOLS
Ilango Velchamy (2015)
10.1007/1-4020-3898-4_3
Analysis and Visualization of Social Diffusion Patterns in Three-Dimensional Virtual Worlds
Shashikant Penumarthy (2006)
Chapter 1 Shape Identification in Temporal Data Sets
M. Gregory (2011)
Categorizing classes of signals by means of fuzzy gradual rules
S. Galichet (2003)
10.1007/3-540-44967-1_38
Imprecise Modelling Using Gradual Rules and Its Application to the Classification of Time Series
S. Galichet (2003)
Exhaustive Generation and Visual Browsing for Radiation Patterns of Linear Array Antennas
D. Leigh (2004)
Visual Query Language: Finding patterns in and relationships among time series data
K. Haigh (2004)
10.1145/956750.956774
Generating English summaries of time series data using the Gricean maxims
Somayajulu Sripada (2003)
See more
Semantic Scholar Logo Some data provided by SemanticScholar