Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Imaging Angiogenesis, Inflammation, And Metastasis In The Tumor Microenvironment With Magnetic Resonance Imaging.

S. Serres, E. R. O’Brien, N. Sibson
Published 2014 · Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
With the development of new imaging techniques, the potential for probing the molecular, cellular, and structural components of the tumor microenvironment in situ has increased dramatically. A multitude of imaging modalities have been successfully employed to probe different aspects of the tumor microenvironment, including expression of molecules, cell motion, cellularity, vessel permeability, vascular perfusion, metabolic and physiological changes, apoptosis, and inflammation. This chapter focuses on the most recent advances in magnetic resonance imaging methods, which offer a number of advantages over other methodologies, including high spatial resolution and the use of nonionizing radiation, as well as the use of such methods in the context of primary and secondary brain tumors. It also highlights how they can be used to assess the molecular and cellular changes in the tumor microenvironment in response to therapy.
This paper references
10.1002/mrm.20906
Velocity‐selective arterial spin labeling
E. Wong (2006)
10.1093/neuonc/nos126
Longitudinal evaluation of MPIO-labeled stem cell biodistribution in glioblastoma using high resolution and contrast-enhanced MR imaging at 14.1 tesla.
M. Chaumeil (2012)
10.1148/RADIOL.2223010558
High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging.
M. Law (2002)
10.1073/pnas.0806787106
Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease
S. V. van Kasteren (2009)
10.1038/nrc2289
New approaches for imaging tumour responses to treatment
K. Brindle (2008)
10.1148/RADIOLOGY.175.2.2326475
Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging.
R. Weissleder (1990)
10.1016/S0730-725X(99)00085-5
Method for intracellular magnetic labeling of human mononuclear cells using approved iron contrast agents.
J. Sipe (1999)
10.1158/1078-0432.CCR-11-0575
Distinguishing Inflammation from Tumor and Peritumoral Edema by Myeloperoxidase Magnetic Resonance Imaging
A. Kleijn (2011)
10.1556/APhysiol.98.2011.1.4
Imaging cellular markers of neuroinflammation in the brain of the rat model of amyotrophic lateral sclerosis.
D. Bataveljic (2011)
10.1007/s00262-010-0892-3
A novel human recombinant single-chain antibody targeting CD166/ALCAM inhibits cancer cell invasion in vitro and in vivo tumour growth
M. Wiiger (2010)
10.1007/s10555-012-9394-4
The impact of tumor microenvironment on cancer treatment and its modulation by direct and indirect antivascular strategies
E. Fokas (2012)
10.1002/MRM.1910290416
Double inversion recovery improves water suppression in vivo
J. Shen (1993)
10.1002/nbm.1536
Dynamics and fate of USPIO in the central nervous system in experimental autoimmune encephalomyelitis
Raoul D Oude Engberink (2010)
10.1016/0730-725X(88)90092-6
MRI of hepatic lymphoma.
R. Weissleder (1988)
10.1038/sj.bjc.6603515
DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents
J. P. O'Connor (2007)
10.1073/pnas.1014480108
Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma
O. Keunen (2011)
10.1158/0008-5472.CAN-06-1668
Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner.
Chunfu Zhang (2007)
10.1073/pnas.1117412109
Molecular MRI enables early and sensitive detection of brain metastases
S. Serres (2012)
Drug targeting in magnetic resonance imaging.
R. Weissleder (1992)
10.1148/RADIOL.2293031017
How can superparamagnetic iron oxides be used to monitor disease and treatment?
E. Unger (2003)
10.1586/era.10.141
EGF receptor in lung cancer: a successful story of targeted therapy
G. Domingo (2010)
10.1182/blood-2012-08-449819
VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice.
Špela Ferjančič (2013)
10.1056/NEJMOA022749
Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.
M. Harisinghani (2003)
10.1038/35025220
Angiogenesis in cancer and other diseases
P. Carmeliet (2000)
10.1038/jcbfm.2009.287
Molecular Magnetic Resonance Imaging of Acute Vascular Cell Adhesion Molecule-1 Expression in a Mouse Model of Cerebral Ischemia
L. C. Hoyte (2010)
10.1111/j.1365-2990.2004.00557.x
Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours
E. Neuwelt (2004)
10.1016/j.nano.2012.06.003
Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug, loaded nanoparticles.
Zibin Gao (2013)
10.1002/JMRI.1880070629
Uptake of dextran‐coated monocrystalline iron oxides in tumor cells and macrophages
A. Moore (1997)
10.1016/j.cell.2010.03.014
Macrophage Diversity Enhances Tumor Progression and Metastasis
Bin-Zhi Qian (2010)
10.1002/jcp.21029
High affinity interaction of integrin α4β1 (VLA‐4) and vascular cell adhesion molecule 1 (VCAM‐1) enhances migration of human melanoma cells across activated endothelial cell layers
M. Klemke (2007)
10.1016/j.critrevonc.2011.12.008
Tumour response prediction by diffusion-weighted MR imaging: ready for clinical use?
L. Heijmen (2012)
10.1016/S0046-8177(86)80285-4
Cellular and vascular manifestations of cell-mediated immunity.
H. Dvorak (1986)
10.1002/MRM.1910290504
Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties
T. Shen (1993)
10.1186/1471-2121-11-22
Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles
R. Schaefer (2009)
10.1002/MRM.1910400303
A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging
E. Wong (1998)
10.1586/14737159.8.4.417
EGFR/HER2 in breast cancer: a biological approach for molecular diagnosis and therapy
F. Milanezi (2008)
10.1038/359845A0
Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo
K. Plate (1992)
10.1186/1477-3155-10-25
Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent
L. Paulis (2012)
Patterns of epidermal growth factor receptor amplification in malignant gliomas.
G. Sauter (1996)
10.1038/nrclinonc.2011.141
Noninvasive cell-tracking methods
M. Kircher (2011)
10.1002/ijc.11102
Vascular endothelial growth factor‐A determines detectability of experimental melanoma brain metastasis in GD‐DTPA‐enhanced MRI.
W. Leenders (2003)
10.1007/s10555-008-9147-6
Non-invasive assessment of tumor neovasculature: techniques and clinical applications
R. Perini (2008)
10.1038/nrc1367
Exploiting tumour hypoxia in cancer treatment
J. M. Brown (2004)
10.1056/NEJM197108122850711
Transplacental carcinogenesis by stilbestrol.
J. Folkman (1971)
10.1002/nbm.1596
Quantitative T2* imaging of metastatic human breast cancer to brain in the nude rat at 3 T
Hotaek Song (2011)
10.1517/13543781003593962
Colorectal cancer in review: the role of the EGFR pathway
M. Saif (2010)
10.1002/IJC.2910620206
EGFR gene amplification ‐ rearrangement in human glioblastomas
K. Schwechheimer (1995)
10.1102/1470-7330.2008.0019
Magnetic resonance perfusion imaging in neuro-oncology
A. Jackson (2008)
10.1038/nbt1121
In vivo imaging platform for tracking immunotherapeutic cells
E. Ahrens (2005)
10.1016/j.cell.2011.02.013
Hallmarks of Cancer: The Next Generation
D. Hanahan (2011)
10.1002/mrm.10211
Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla
J. Wang (2002)
10.1016/J.MRI.2006.09.006
Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results.
T. Yankeelov (2007)
10.1096/fj.06-6505com
19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons
Kathryn C. Partlow (2007)
10.1148/RADIOLOGY.169.2.3174987
Superparamagnetic iron oxide: enhanced detection of focal splenic tumors with MR imaging.
R. Weissleder (1988)
10.3727/096368911X627598
Evaluation of Intracellular Labeling with Micron-Sized Particles of Iron Oxide (MPIOs) as a General Tool for In Vitro and in Vivo Tracking of Human Stem and Progenitor Cells
J. Boulland (2012)
10.1093/jnci/92.3.205
New Guidelines to Evaluate the Response to Treatment in Solid Tumors.
P. Therasse (2000)
10.1096/fj.11-183772
VCAM‐1‐targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis
S. Serres (2011)
10.1016/j.acvd.2012.09.002
Predicting favourable outcomes in the setting of radiofrequency catheter ablation of long-standing persistent atrial fibrillation: a pilot study assessing the value of left atrial appendage peak flow velocity.
S. Combes (2013)
10.1073/PNAS.0403918101
MRI detection of single particles for cellular imaging.
E. Shapiro (2004)
10.1007/s10585-011-9428-2
Differential microstructure and physiology of brain and bone metastases in a rat breast cancer model by diffusion and dynamic contrast enhanced MRI
M. Budde (2011)
10.1158/0008-5472.CAN-11-3406
Anti-VEGF/VEGFR therapy for cancer: reassessing the target.
Basel Sitohy (2012)
10.1073/PNAS.0503082102
Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress.
J. Wang (2005)
High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas.
H. Aronen (2000)
10.2174/138920112799436285
Monitoring molecular, functional and morphologic aspects of bone metastases using non-invasive imaging.
Tobias Bauerle (2012)
10.1038/nm1631
In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide
M. McAteer (2007)
10.1172/JCI33314
A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI.
C. von zur Muhlen (2008)
10.2214/AJR.149.6.1161
Ferrite-enhanced MR imaging of hepatic lymphoma: an experimental study in rats.
R. Weissleder (1987)
10.1073/PNAS.89.1.212
Magnetic resonance imaging of perfusion using spin inversion of arterial water.
D. S. Williams (1992)
10.1002/mrm.20342
Sizing it up: Cellular MRI using micron‐sized iron oxide particles
E. Shapiro (2005)
10.1016/J.SURG.2007.01.016
ICAM-1 expression determines malignant potential of cancer.
C. L. Roland (2007)
10.1097/TP.0b013e3181ffba5e
Magnetic Resonance Imaging of Pancreatic Islets Transplanted Into the Liver in Humans
F. Saudek (2010)
10.1021/BC990168D
Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide.
R. Bhorade (2000)
10.1093/JNCI/DJI023
Imaging angiogenesis: applications and potential for drug development.
J. C. Miller (2005)
10.1038/SJ.NEO.7900176
Magnetic labeling of activated microglia in experimental gliomas.
G. Fleige (2001)
10.1038/nature04478
Angiogenesis in life, disease and medicine
P. Carmeliet (2005)
10.1016/j.pscychresns.2003.09.003
MRI volumetry of the vermis and the cerebellar hemispheres in men with schizophrenia
C. Joyal (2004)
10.1158/0008-5472.CAN-10-1139
Targeted signal-amplifying enzymes enhance MRI of EGFR expression in an orthotopic model of human glioma.
M. Shazeeb (2011)
10.1002/JMRI.1880070140
Magnetically labeled cells can be detected by MR imaging
R. Weissleder (1997)
10.1007/s11307-013-0617-z
MRI of ICAM-1 Upregulation After Stroke: the Importance of Choosing the Appropriate Target-Specific Particulate Contrast Agent
L. Deddens (2013)
10.1002/mrm.20747
In vivo magnetic resonance imaging of single cells in mouse brain with optical validation
C. Heyn (2006)
10.1148/RADIOL.2282020409
Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging.
C. Warmuth (2003)
10.1002/MRM.1910120202
Monoclonal antibody‐coated magnetite particles as contrast agents in magnetic resonance imaging of tumors
S. Cerdán (1989)
10.1002/jmri.20415
Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla
R. Wolf (2005)
10.1148/RADIOL.2293021215
Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging.
A. Arbab (2003)
10.1002/jmri.10361
Dynamic contrast enhanced perfusion MRI in mycosis fungoides
M. Law (2003)
10.1148/RADIOLOGY.197.2.7480707
MR imaging of phagocytosis in experimental gliomas.
C. Zimmer (1995)
10.1002/mrm.21029
In vivo MRI of cancer cell fate at the single‐cell level in a mouse model of breast cancer metastasis to the brain
C. Heyn (2006)
10.1093/carcin/bgp127
Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability.
F. Colotta (2009)
10.2214/AJR.149.4.723
MR imaging of splenic metastases: ferrite-enhanced detection in rats.
R. Weissleder (1987)
10.1073/PNAS.0501532102
Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response.
B. Moffat (2005)
10.1038/nature06917
Imaging in the era of molecular oncology
R. Weissleder (2008)
10.1148/RADIOLOGY.196.2.7617871
Cerebral iron oxide distribution: in vivo mapping with MR imaging.
C. Zimmer (1995)
10.1007/s10555-010-9223-6
Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity
D. DeNardo (2010)
10.1148/RADIOLOGY.191.1.8134596
Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings.
H. Aronen (1994)
10.1371/journal.pmed.0010066
Sensitive, Noninvasive Detection of Lymph Node Metastases
M. Harisinghani (2004)
10.1038/nature04483
Angiogenesis as a therapeutic target
N. Ferrara (2005)
Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging.
M. Law (2003)
10.1016/j.diagmicrobio.2012.06.001
Rapid detection and simultaneous molecular profile characterization of Acanthamoeba infections.
P. Goldschmidt (2012)
10.1136/jcp.2010.082602
Protein expression analysis of ALCAM and CEACAM6 in breast cancer metastases reveals significantly increased ALCAM expression in metastases of the skin
M. Ihnen (2011)
10.1002/ijc.25563
Cilengitide inhibits progression of experimental breast cancer bone metastases as imaged noninvasively using VCT, MRI and DCE‐MRI in a longitudinal in vivo study
T. Bäuerle (2011)
10.1371/journal.pone.0005857
The Vascular Basement Membrane as “Soil” in Brain Metastasis
W. Carbonell (2009)
10.1002/NBM.770
In‐vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO
M. Rausch (2002)
10.2214/AJR.150.4.823
MR imaging of focal splenic tumors.
P. Hahn (1988)
10.1016/j.semcancer.2010.04.005
Selectins promote tumor metastasis.
H. Läubli (2010)
10.1016/0730-725X(95)00024-B
Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil.
C. W. Jung (1995)
10.1007/s00415-009-5034-5
Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence
F. Hoefnagels (2009)
10.1002/nbm.1720
MRI & MRS assessment of the role of the tumour microenvironment in response to therapy
L. Bell (2011)
10.1186/1477-3155-10-37
Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages
T. Geelen (2012)
10.1002/MRM.1910400308
A general kinetic model for quantitative perfusion imaging with arterial spin labeling
R. Buxton (1998)
10.1016/j.biomaterials.2012.04.032
Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles.
F. Zhang (2012)
10.1038/nrc2622
Metastasis: from dissemination to organ-specific colonization
D. Nguyen (2009)
10.1056/NEJM197111182852108
Tumor angiogenesis: therapeutic implications.
J. Folkman (1971)
10.1016/j.neuroimage.2007.05.041
In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma
S. Valable (2007)
10.1158/0008-5472.CAN-12-3514
Automated tracking of nanoparticle-labeled melanoma cells improves the predictive power of a brain metastasis model.
Terje Sundstrøm (2013)
Magnetic resonance imaging of immune cells in inflammation of central nervous system.
I. Pirko (2003)
10.1002/mrm.20391
Molecular MR imaging of melanoma angiogenesis with ανβ3‐targeted paramagnetic nanoparticles
A. Schmieder (2005)
10.1148/RADIOL.2312030565
Acute ischemic stroke: predictive value of 2D phase-contrast MR angiography--serial study with combined diffusion and perfusion MR imaging.
Y. Liu (2004)
10.1038/nbt1154
Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy
I. J. Vries (2005)
10.1161/01.STR.0000150495.96471.95
Abnormal Intravoxel Cerebral Blood Flow Heterogeneity in Human Ischemic Stroke Determined by Dynamic Susceptibility Contrast Magnetic Resonance Imaging
J. Perkiö (2005)
10.1523/JNEUROSCI.0406-09.2009
Systemic Inflammatory Response Reactivates Immune-Mediated Lesions in Rat Brain
S. Serres (2009)
10.1097/00004647-199611000-00019
Reduced Transit-Time Sensitivity in Noninvasive Magnetic Resonance Imaging of Human Cerebral Blood Flow
D. Alsop (1996)
10.1016/S1076-6332(03)80425-7
Quantitative estimation of microvascular permeability in human brain tumors: correlation of dynamic Gd-DTPA-enhanced MR imaging with histopathologic grading.
H. Roberts (2002)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar