Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Lipids Of Pseudomonas

H. Pinkart, D. White
Published 1998 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Lipids are generally defined as fatty acids, alcohols, hydrocarbons, and compounds containing these substances which are soluble in organic solvents. The lipids most commonly found in bacteria are phospholipids, glycolipids, ornithine amide lipids, fatty acids, and lipopolysaccharides. Phospholipids generally constitute ~40% of the cytoplasmic membrane of bacteria and up to 25% of the outer membrane (mainly localized in the inner leaflet). A generalized structure for a Pseudomonas membrane is shown in Figure 1. It has been found that the predominant phospholipid in both the inner and outer membranes in most Pseudomonas species is phosphatidylethanolamine (Wilkinson, 1988). Ornithine amide lipids are localized in the outer membrane. Lipopolysaccharides are located in the outer leaflet of the outer membrane of gram-negative bacteria. Glycolipids are generally found as storage lipids located in intracellular inclusions but can also be found in the membranes of P. diminuta and P. vesicularis and gram-positive bacteria (Wilkinson, 1988). Carotenoids and hydrocarbons may be found in the cytoplasmic membrane.
This paper references
10.1016/0958-1669(94)90031-0
Biosurfactants in environmental biotechnology
W. Finnerty (1994)
10.1007/BF01457649
Formation of polyester blends by a recombinant strain of Pseudomonas oleovorans: Different poly(3-hydroxyalkanoates) are stored in separate granules
H. Preusting (1993)
10.1111/j.1699-0463.1989.tb00746.x
Is Theiler's murine encephalomyelitis virus infection of mice an autoimmune disease?
R. Fujinami (1989)
10.1128/MMBR.54.4.450-472.1990
Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates.
Alistair J. Anderson (1990)
10.1128/JB.177.24.7155-7163.1995
Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family.
J. M. Brint (1995)
10.1073/PNAS.92.5.1490
A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa.
J. P. Pearson (1995)
10.1128/AEM.60.12.4440-4444.1994
Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes.
H. Heipieper (1994)
10.1111/J.1365-2672.1994.TB01620.X
Biochemical and chemotaxonomic characterization of Pseudomonas stutzeri genomovars
R. Rosselló-Mora (1994)
10.1016/0014-5793(74)80655-1
The replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine‐amide lipid and a minor phosphorus‐free lipid in Pseudomonas flourescens NCMB 129
D. Minnikin (1974)
10.1128/AEM.62.3.1129-1132.1996
Cell Envelope Changes in Solvent-Tolerant and Solvent-Sensitive Pseudomonas putida Strains following Exposure to o-Xylene.
H. Pinkart (1996)
10.1128/MMBR.59.2.201-222.1995
Mechanisms of membrane toxicity of hydrocarbons.
J. Sikkema (1995)
10.1165/AJRCMB/6.1.116
Release of mucus glycoconjugates by Pseudomonas aeruginosa rhamnolipid into feline trachea in vivo and human bronchus in vitro.
M. Somerville (1992)
10.1111/j.1348-0421.1992.tb02128.x
Identification of Oklahoma Isolate as a Strain of Pseudomonas pseudomallei
E. Yabuuchi (1992)
10.1016/S0958-1669(96)80034-6
The genus Sphingomonas: physiology and ecology.
D. White (1996)
10.1111/J.1574-6968.1993.TB05936.X
Polar lipids of ‘Pseudomonas diazotrophicus’
C. J. Taylor (1993)
10.1111/j.1699-0463.1989.tb00519.x
Effect of Pseudomonas aeruginosa rhamnolipid on human neutrophil and monocyte function
A. Kharazmi (1989)
10.1099/00221287-134-7-1939
Phenotypic Diversity in Pseudomonas syringae pv. tomato
T. Denny (1988)
10.1111/j.1348-0421.1990.tb00996.x
Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and Two Genospecies of the Genus Sphingomonas
E. Yabuuchi (1990)
10.1111/j.1472-765X.1985.tb01476.x
Cell envelope composition and sensitivity of Proteus mirabilis, Pseudomonas aeruginosa and Serratia marcescens to polymyxin and other antibacterial agents
M. J. Norris (1985)
10.1128/JB.154.2.870-878.1983
Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane.
M. D. de Smet (1983)
10.1128/AEM.58.10.3276-3282.1992
Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant).
Y. Zhang (1992)
10.1099/00221287-137-1-197
POLAR LIPIDS AND FATTY ACIDS OF PSEUDOMONAS CARYOPHYLLI, PSEUDOMONAS GLADIOLI AND PSEUDOMONAS PICKETTII
L. Galbraith (1991)
10.1016/0003-9861(92)90289-9
Characterization of lipid A from Pseudomonas aeruginosa O-antigenic B band lipopolysaccharide by 1D and 2D NMR and mass spectral analysis.
D. N. Karunaratne (1992)
10.1099/13500872-140-8-2013
Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene.
F. Weber (1994)
10.1016/0005-2760(80)90098-3
Studies on cyclopropane fatty acid synthesis. Effect of carbon source and oxygen tension on cyclopropane fatty acid synthetase activity in Pseudomonas denitrificans.
N. Jacques (1980)
10.1111/J.1365-2672.1987.TB02669.X
Volatile compounds produced by meat pseudomonads and relate reference strains during growth on beef stored in air at chill temperatures.
R. A. Edwards (1987)
10.1128/AEM.58.2.536-544.1992
Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers.
G. N. Huijberts (1992)
10.1016/0005-2760(80)90118-6
Fatty acid composition of the lipids of Pseudomonas mildenbergii. Presence of a fatty acid containing two conjugated double bonds.
J. Roussel (1980)
10.1111/J.1432-1033.1992.TB17256.X
Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1.
A. Timm (1992)
10.1016/0005-2760(90)90150-V
Characterisation of Pseudomonas rhamnolipids.
N. Rendell (1990)
10.1126/SCIENCE.8493556
Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication.
L. Passador (1993)
10.1073/PNAS.92.20.9427
Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa.
M. Winson (1995)
10.1093/OXFORDJOURNALS.PCP.A077408
Effect of Growth Temperature on Phospholipid and Fatty Acid Compositions in a Psychrotrophic Bacterium, Pseudomonas sp. Strain E-3
Masato Wada (1987)
10.1128/AAC.35.10.2091
Role of protein D2 and lipopolysaccharide in diffusion of quinolones through the outer membrane of Pseudomonas aeruginosa.
M. Michéa-Hamzehpour (1991)
10.1139/M93-162
Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil.
M. V. Van Dyke (1993)
Effects of hyperbaric oxygen on the growth and properties of Pseudomonas aeruginosa.
M. A. Kenward (1980)
10.1128/JCM.18.5.1073-1078.1983
Cellular fatty acid composition of Pseudomonas marginata and closely associated bacteria.
S. Dees (1983)
10.1139/M87-129
Biosynthesis of trans fatty acids from acetate in the bacterium Pseudomonas atlantica
J. B. Guckert (1987)
10.1016/s0021-9258(18)54151-x
Heteronuclear NMR analysis of unsaturated fatty acids in poly(3-hydroxyalkanoates). Study of beta-oxidation in Pseudomonas putida.
P. D. de Waard (1993)
10.1016/0003-9861(92)90274-Z
Synthesis of high-affinity, hydrophobic monosaccharide derivatives and study of their interaction with concanavalin A, the pea, the lentil, and fava bean lectins.
D. Loganathan (1992)
10.1128/JB.176.6.1661-1666.1994
13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis.
G. N. Huijberts (1994)
10.1515/znc-1985-1-213
Production of Four Interfacial Active Rhamnolipids from n-Alkanes or Glycerol by Resting Cells of Pseudomonas species DSM 2874
C. Syldatk (1985)
10.1021/JF00003A011
Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens
M. V. Laycock (1991)
10.1128/AEM.60.9.3292-3299.1994
Changes in Ester-Linked Phospholipid Fatty Acid Profiles of Subsurface Bacteria during Starvation and Desiccation in a Porous Medium.
T. L. Kieft (1994)
10.1016/S0723-2020(11)80161-X
A chemotaxonomic study of members of the family Halomonadaceae
P. D. Franzmann (1990)
10.1016/S0723-2020(11)80307-3
Infra- and Intraspecific Classification of Pseudomonas solanacearum Strains, using Whole Cell Fatty Acid Analysis
J. Janse (1991)
10.3109/10242429409065221
Cellular toxicity of lipophilic compounds: mechanisms, implications, and adaptations.
J. Sikkema (1994)
10.1201/9781315138428
Biosurfactants and Biotechnology
Kosaric (1987)
10.1099/00207713-42-2-281
Grouping of Plant-Pathogenic and Some Other Pseudomonas spp. by Using Cellular Fatty Acid Profiles
D. Stead (1992)
10.1073/PNAS.92.14.6424
Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa.
U. Ochsner (1995)
10.1111/J.1574-6968.1992.TB05841.X
Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria.
A. Steinbuechel (1992)
10.1099/00207713-44-2-308
Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria.
M. Takeuchi (1994)
10.1099/00207713-44-3-499
Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively.
P. Segers (1994)
10.1111/J.1365-2672.1987.TB04931.X
Cellular fatty acid composition in moderately halophilic Gram‐negative rods
M. Monteoliva-Sánchez (1987)
10.1111/j.1365-2958.1995.mmi_17020333.x
Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1
A. Latifi (1995)
10.1016/S0723-2020(11)80365-6
Pathovar discrimination within Pseudomonas syringae subsp. savastanoi using whole cell fatty acids and pathogenicity as criteria.
J. Janse (1991)
10.1111/j.1348-0421.1992.tb02129.x
Proposal of Burkholderia gen. nov. and Transfer of Seven Species of the Genus Pseudomonas Homology Group II to the New Genus, with the Type Species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov.
E. Yabuuchi (1992)
10.1016/0005-2760(81)90012-6
Studies on cyclopropane fatty acid synthesis. Correlation between the state of reduction of respiratory components and the accumulation of methylene hexadecanoic acid by Pseudomonas denitrificans.
N. Jacques (1981)
10.1111/J.1432-1033.1973.TB02666.X
Cell walls, lipids, and lipopolysaccharides of Pseudomonas species.
S. Wilkinson (1973)
10.1002/CM.970060509
Rhamnolipid from Pseudomonas aeruginosa inactivates mammalian tracheal ciliary axonemes.
A. Hastie (1986)
10.1128/JB.169.5.1960-1966.1987
Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO.
A. Kropinski (1987)
10.1094/PHYTO-84-663
Physiological, chemical, serological, and pathogenic analyses of a worldwide collection of Xanthomonas campestris pv. vesicatoria strains.
H. Bouzar (1994)
10.1128/AEM.58.6.1847-1852.1992
Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity.
H. Heipieper (1992)
10.1016/s0021-9258(18)67872-x
THE ENZYMATIC SYNTHESIS OF A RHAMNOSE-CONTAINING GLYCOLIPID BY EXTRACTS OF PSEUDOMONAS AERUGINOSA.
M. Burger (1963)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar