Online citations, reference lists, and bibliographies.
← Back to Search

Food Freezing And Thawing Calculations

Q. Pham
Published 2014 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Preface.- Nomenclature.- Introduction to the Freezing Process.- Heat Transfer Coefficient and Physical Properties.- Introduction.- Analytical Solutions.- Approximate and Empirical Methods.- Numerical Methods.- Modeling Coupled Phenomena.- Conclusions.- References.- Index.
This paper references
1913b) Die Gefrierdauer von Eisblocken
R. Plank (1913)
Beitrage zur Berechnung und Bewertung der Gefriergeschwindigkeit von Lebensmitteln, Zeitschrift fur die gesamte Kalte Industrie
R. Plank (1913)
10.1098/rsta.1946.0002
The calculation of variable heat flow in solids
N. R. Eyres (1946)
10.2307/3610347
Conduction of Heat in Solids
H. S. Carslaw. (1947)
10.1017/S0305004100023197
A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
J. Crank (1947)
Temperature field around spherical, cylindrical and needle-shaped crystals which grow in supercooled melt
G. P. Ivantsov (1947)
The thermal conductivity of granular materials, Annex 1952-1
D. A. De Vries (1952)
10.1139/P53-003
A PRISMATIC SUBSTRUCTURE FORMED DURING SOLIDIFICATION OF METALS
J. Rutter (1953)
10.1088/0508-3443/5/8/304
The effect of latent heat on numerical solutions of the heat flow equation
P. H. Price (1954)
Problems of the Theory of Food Freezing
G. Tchigeov (1956)
10.1029/TR039I005P00909
Simultaneous transfer of heat and moisture in porous media
D. D. Vries (1958)
10.1139/P58-131
SOME OBSERVATIONS ON THE DEPENDENCE OF STRAIN ON STRESS FOR ICE
L. W. Gold (1958)
Eine Prüfsubstanz für Gefrierversuche
L. Riedel (1960)
10.1016/0001-6160(61)90008-6
Dendritic and spheroidal growth
G. Horvay (1961)
10.1007/BF01386295
Alternating direction methods for three space variables
Jr. Jim Douglas (1962)
10.1085/JGP.47.2.347
Kinetics of Water Loss from Cells at Subzero Temperatures and the Likelihood of Intracellular Freezing
P. Mazur (1963)
10.1090/S0025-5718-1966-0207224-5
A Linear Three-Level Difference Scheme for Quasilinear Parabolic Equations*
M. Lees (1966)
10.13031/2013.39395
Applications of Geometry Analysis of Anomalous Shapes to Problems in Transient Heat Transfer
R. E. Smith (1968)
On a numerical method for the solution of the unsteady-state heat
C. Bonacina (1971)
10.1016/0022-0248(72)90285-0
Production of large crystals by continuous ripening in a stirrer tank
N. Huige (1972)
10.1016/0017-9310(73)90262-7
Heat transfer with melting or freezing in a wedge
H. Budhia (1973)
10.1016/0017-9310(74)90061-1
The inward solidification of spheres and circular cylinders
D. Riley (1974)
10.13031/2013.36674
Prediction of Thermal Conductivity in Frozen Foods
D. Heldman (1975)
10.1021/JE60064A005
Density, thermal expansivity, and compressibility of liquid water from 0.deg. to 150.deg.. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale
G. Kell (1975)
10.1016/0898-1221(77)90080-3
Applied Finite Element Analysis
L. Segerlind (1976)
10.1111/J.1365-2621.1976.TB01123.X
EFFECTIVE HEAT CAPACITIES FOR THE FREEZING AND THAWING OF FOOD
H. Schwartzberg (1976)
10.1115/1.3450598
Thermal Aspects of Cryosurgery
G. Comini (1976)
A comparison of freezing calculations including modification to take into account initial superheat. Refrigeration Science and Technology (International Institute of Refrigeration
A. C. Cleland (1976)
Heat transfer during freezing of foods and prediction of freezing times : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biotechnology at Massey University
A. Cleland (1977)
10.1016/0309-1740(77)90018-3
A model for the thermal conductivity of frozen meat.
R. H. Mascheroni (1977)
10.1111/J.1365-2621.1977.TB14506.X
A COMPARISON OF ANALYTICAL AND NUMERICAL METHODS OF PREDICTING THE FREEZING TIMES OF FOODS
A. Cleland (1977)
10.1002/NME.1620120710
An improved algrorithm for heat conduction problems with phase change
K. Morgan (1978)
10.1016/0309-1740(79)90035-4
Dendritic growth of ice crystals during the freezing of beef.
F. C. Menegalli (1979)
Phase-change techniques for finite element conduction codes
E. C. Lemmon (1979)
10.1111/J.1365-2621.1979.TB03422.X
A COMPARISON OF METHODS FOR PREDICTING THE FREEZING TIMES OF CYLINDRICAL AND SPHERICAL FOODSTUFFS
A. Cleland (1979)
1979a) A comparison of methods for predicting the freezing times
A. C. Cleland (1979)
Thermophysical Processes in Food Refrigeration Technology
G. Tchigeov (1979)
10.1016/0011-2240(80)90009-7
Thermal stresses in frozen organs.
B. Rubinsky (1980)
10.1016/0017-9310(81)90062-4
Accurate solutions of moving boundary problems using the enthalpy method
V. Voller (1981)
10.1016/0140-7007(81)90053-0
A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures
F. L. Levy (1981)
10.1111/J.1365-2621.1982.TB12941.X
Simplified Equations for Transient Temperatures in Conductive Foods with Convective Heat Transfer at the Surface
H. Ramaswamy (1982)
10.1016/0140-7007(82)90084-6
A simple method for prediction of heating and cooling cooling in solids of various shapes
A. Cleland (1982)
10.1016/0140-7007(82)90069-X
THE EFFECT OF FREEZING RATE ON THE ACCURACY OF NUMERICAL FREEZING CALCULATIONS.
A. Cleland (1982)
10.1111/J.1365-2621.1982.TB07648.X
A Simplified Model for Freezing Time Calculations in Foods
R. Mascheroni (1982)
10.1111/J.1365-2621.1982.TB07650.X
Mathematical Models for Nonsymmetric Freezing of Beef
A. Michelis (1982)
10.1016/0021-9991(82)90066-3
Boundary-fitted coordinate systems for numerical solution of partial differential equations—A review
J. Thompson (1982)
10.1016/0011-2240(82)90137-7
Nucleation rates of ice in undercooled water and aqueous solutions of polyethylene glycol.
R. Michelmore (1982)
10.1002/NME.1620180111
AN EFFICIENT ALGORITHM FOR ANALYSIS OF NONLINEAR HEAT TRANSFER WITH PHASE CHANGES
W. Rolph (1982)
10.1111/J.1365-2621.1983.TB14928.X
Freezing Time Predictions for Brick and Cylindrical‐Shaped Foods
A. Michelis (1983)
10.1111/J.1365-2621.1983.TB10789.X
Freezing Time Prediction for Slab Shape Foodstuffs by an Improved Analytical Method
Y. Hung (1983)
10.1111/J.1365-2621.1984.TB14969.X
A Model for Food Desiccation in Frozen Storage
Q. T. Pham (1984)
10.1111/J.1365-2621.1984.TB10387.X
Assessment of Freezing Time Prediction Methods
A. Cleland (1984)
10.1111/J.1365-2621.1984.TB10444.X
Freezing Time Predictions for Different Final Product Temperatures
A. Cleland (1984)
10.1002/NME.1620200203
Modelization of phase changes by fictitious‐heat flow
Jean S. Roose (1984)
10.1016/0140-7007(84)90047-1
Prediction of rates of freezing, thawing or cooling in solids or arbitrary shape using the finite element method
D. J. Cleland (1984)
10.1016/0140-7007(85)90034-9
RADS — a computer package for refrigeration analysis, design and simulation
A. Cleland (1985)
10.1007/BF00254827
An analysis of a phase field model of a free boundary
G. Caginalp (1986)
10.1016/0140-7007(86)90094-0
Prediction of thawing times for foods of simple shape
D. J. Cleland (1986)
Effects of temperature and composition on the thermal properties of foods
Y. Choi (1986)
Conduction of Heat in Solids, 2nd edn
G. Kirchhoff (1986)
10.1016/0017-9310(87)90166-9
The theory of heat and moisture transfer in porous media revisited
D. A. Vries (1987)
10.1016/0017-9310(87)90317-6
A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems
V. Voller (1987)
10.1111/J.1745-4530.1987.TB00133.X
A SIMPLIFIED ANALYTICAL MODEL FOR FREEZING TIME CALCULATION IN FOODS
C. Ilicali (1987)
10.1063/1.453710
The density of supercooled water. II. Bulk samples cooled to the homogeneous nucleation limit
D. Hare (1987)
10.1111/J.1365-2621.1987.TB06730.X
A Converging-Front Model for the Asymmetric Freezing of Slab-Shaped Food
Q. Pham (1987)
Prediction of freezing & thawing times for multidimensional shapes by simple formulae
D. J. Cleland (1987)
10.1051/EPN/19881905061
Physics of Ice
V. Petrenko (1988)
10.1111/J.1365-2621.1988.TB07802.X
Ice Crystal Size Modifications during Frozen Beef Storage
M. Martino (1988)
10.1111/J.1745-4530.1988.TB00006.X
FREEZING TIME CALCULATION FOR PRODUCTS WITH SIMPLE GEOMETRICAL SHAPES
C. Lacroix (1988)
Front propagating with curvature-dependent speed: Algorithms
S. Osher (1988)
10.1016/0011-2240(89)90044-8
Ice recrystallization in a model system and in frozen muscle tissue.
M. Martino (1989)
10.1103/PHYSREVA.39.5887
Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations.
Caginalp (1989)
10.1111/J.1365-2621.1989.TB04639.X
Thermal Conductivity of Fresh Lamb Meat, Offals and Fat in the Range ‐40 to +30oC: Measurements and Correlations
Q. T. Pham (1989)
10.1016/0260-8774(89)90011-3
A numerical model to describe freezing of foods when supercooling occurs
O. Miyawaki (1989)
10.1111/J.1745-4530.1989.TB00032.X
FORMULAS FOR ESTIMATING SMITH ET AL. PARAMETERS to DETERMINE the MASS AVERAGE TEMPERATURE of IRREGULARLY SHAPED BODIES
K. Hayakawa (1989)
Conservative equivalent heat capacity methods for non-linear heat conduction, in Numerical Methods in Thermal Problems (eds
G. Comini (1989)
10.1111/J.1365-2621.1990.TB03951.X
Effect of biot number and freezing rate on accuracy of some food freezing time prediction methods
Q. T. Pham (1990)
10.1201/B15040
CRC Handbook of Chemistry and Physics
W. M. Haynes (1990)
10.1063/1.345670
Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells
M. Toner (1990)
10.1080/10407799008961737
FAST IMPLICIT FINITE-DIFFERENCE METHOD FOR THE ANALYSIS OF PHASE CHANGE PROBLEMS
V. Voller (1990)
Food refrigeration processes : analysis, design, and simulation
A. Cleland (1990)
10.1002/NME.1620300419
Fixed grid techniques for phase change problems: A review
V. Voller (1990)
Transition times between steady states for heat conduction, Part I: General theory and some exact results
A. McNabb (1990)
A simplified approach for predicting the freezing times of foodstuffs of anomalous shape, in Engineering and Food, Vol. 2, (eds W.E.L
C Ilicali (1990)
Transition times between steady states for heat conduction, Part II: Approximate solutions and examples
A. McNabb (1990)
10.1016/0260-8774(91)90038-T
Prediction of freezing and thawing times of foods by means of a simplified analytical method
V. O. Salvadori (1991)
10.1080/10407799108944962
ERAL SOURCE-BASED METHOD FOR SOLIDIFICATION PHASE CHANGE
V. Voller (1991)
The Finite Element Method, McGraw-Hill, London
O. C. Zienkiewicz (1991)
Numerical Recipes in C, 2nd Edition
W. Press (1992)
10.1016/0140-7007(92)90053-W
Prediction of freezing and thawing times for foods of regular multi-dimensional shape by using an analytically derived geometric factor
Md.M Hossain (1992)
10.1016/0021-9991(92)90140-T
Crystal growth and dendritic solidification
J. Sethian (1992)
10.1103/PHYSREVA.45.7424
Phase-field model for isothermal phase transitions in binary alloys.
Wheeler (1992)
10.1016/0140-7007(92)90055-Y
Prediction of freezing and thawing times for foods of two-dimensional irregular shape by using a semi-analytical geometric factor.
Md.M Hossain (1992)
10.2166/WST.1992.0591
Waste Water Reuse by Freeze Concentration with a Falling Film Reactor
M. Mueller (1992)
10.1016/0956-7151(93)90065-Z
Probabilistic modelling of microstructure formation in solidification processes
M. Rappaz (1993)
10.1016/0260-8774(93)90074-T
A new method of predicting the time-variability of product heat load during food cooling — Part 2: Experimental testing☆
S. Lovatt (1993)
Cooling and freezing simulation of bakery products. Discussion
S. V. D. Sluis (1993)
10.1016/0167-2789(93)90120-P
Modeling and numerical simulations of dendritic crystal growth
R. Kobayashi (1993)
Prediction of chilling times for objects of regular multi-dimensional shapes using a general geometric factor. Discussion
Z. Lin (1993)
10.1016/0260-8774(93)90073-S
A new method of predicting the time-variability of product heat load during food cooling — Part 1: Theoretical considerations
S. Lovatt (1993)
Nucleation of ice crystals inside biological cells, in Advances in Low Temperature Biology
M. Toner (1993)
10.1016/0260-8774(94)90183-X
Determination of the enthalpy of foods by an adiabatic calorimeter
Q. Pham (1994)
10.1016/0140-7007(94)90004-3
Freezing times of meat balls in belt freezers: experimental determination and prediction by different methods
A. M. Tocci (1994)
10.35537/10915/1449
Transferencia de calor durante la congelación, el almacenamiento y la descongelación de alimentos
V. Salvadori (1994)
10.1016/0140-7007(95)00055-0
Generalized numerical modelling of unsteady heat transfer during cooling and freezing using an improved enthalpy method and quasi one-dimensional formulation
K. Fikiin (1994)
10.1006/JCPH.1994.1155
A level set approach for computing solutions to incompressible two- phase flow II
M. Sussman (1994)
10.1016/0260-8774(94)00034-7
Modelling the Freeze Concentration Process by Irreversible Thermodynamics
S. K. Ratkje (1995)
10.1080/07373939508917048
Freeze Concentratton by Layer Crystallization
O. Flesland (1995)
10.1016/S0260-8774(96)00036-2
Prediction of calorimetric properties and freezing time of foods from composition data
Q. Pham (1996)
10.1016/0140-7007(95)00085-2
Freezing of strawberry pulp in large containers: experimental determination and prediction of freezing times
V. Salvadori (1996)
10.1016/0140-7007(95)00082-8
A simple method for prediction of chilling times: extension to three-dimensional irregular shapes
Z. Lin (1996)
10.1016/0140-7007(95)00081-X
A simple method for prediction of chilling times for objects of two-dimensional irregular shape
Z. Lin (1996)
10.1006/JCPH.1996.5585
The Phase-Field Method in the Sharp-Interface Limit
M. Fabbri (1997)
10.1046/J.1365-2621.1997.00125.X
Estimating the initial freezing point of foods from composition data
C. Miles (1997)
10.1006/FSTL.1996.0130
Simulation of Freezing or Thawing Heat Conduction in Irregular Two-Dimensional Domains by a Boundary-Fitted Grid Method
A. Califano (1997)
10.1016/S0260-8774(96)00070-2
A note on the two models of ice growth velocity in aqueous solutions derived from an irreversible thermodynamics analysis and the conventional heat and mass transfer theory
X. Chen (1997)
10.1016/S0260-8774(97)00067-8
Numerical modeling of high pressure thawing: Application to water thawing
Jean-Marc Chourot (1997)
10.1007/978-1-4615-5975-7_5
Moisture Migration and Ice Recrystallization in Frozen Foods
Q. Pham (1997)
10.1006/JCPH.1997.5721
A Simple Level Set Method for Solving Stefan Problems
S. Chen (1997)
10.1021/bp970022y
Modeling Heat Transfer during High‐Pressure Freezing and Thawing
S. Denys (1997)
10.1016/S0140-7007(97)00048-0
Predicting the dynamic product heat load and weight loss during beef chilling using a multi-region finite difference approach
L. M. Davey (1997)
10.1023/A:1004405607979
Simulation of diffusional composite growth using the cellular automaton finite difference (CAFD) method
S. Brown (1998)
10.1016/S0260-8774(98)00120-4
Ice content prediction methods during food freezing: a survey of the Eastern European literature
K. Fikiin (1998)
10.1017/S0956792598003520
Convergence of the phase field model to its sharp interface limits
G. Caginalp (1998)
10.1115/1.2789058
Thermal Stresses in a Freezing Sphere and its Application to Cryobiology
Y. Rabin (1998)
10.1016/S0260-8774(98)00036-3
Experimental and theoretical study of model food freezing. Part II. Characterization and modelling of the ice crystal size
B. Woinet (1998)
10.1115/1.2798310
Thermal expansion measurements of frozen biological tissues at cryogenic temperatures.
Y. Rabin (1998)
10.1016/S0260-8774(98)00035-1
Experimental and theoretical study of model food freezing. Part I. Heat transfer modelling
B. Woinet (1998)
10.1016/S0140-7007(98)00016-4
Improved dynamic simulation of multi-temperature industrial refrigeration systems for food chilling, freezing and cold storage.
S. Lovatt (1998)
10.1115/1.2834885
Thermal stresses from large volumetric expansion during freezing of biomaterials.
X. Shi (1998)
10.1016/S0006-3495(99)76977-8
The osmotic migration of cells in a solute gradient.
M. Jaeger (1999)
10.1080/014957399280878
Thermal fracture in a biomaterial during rapid freezing
X. Shi (1999)
10.1006/JCPH.1998.6168
Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows
D. Gueyffier (1999)
10.1006/JCPH.1998.6090
The Fast Construction of Extension Velocities in Level Set Methods
D. Adalsteinsson (1999)
10.1016/S0260-8774(99)00026-6
Predictive equations for thermophysical properties and enthalpy during cooling and freezing of food materials
K. Fikiin (1999)
10.1006/jcph.1998.6122
Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures
N. Provatas (1999)
10.1006/JCPH.1999.6356
Regular Article: An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries
Tao Ye (1999)
10.1006/JCPH.1999.6294
Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids
H. Udaykumar (1999)
10.1006/FSTL.1999.0533
Improved Formulations of Shape Factors for the Freezing and Thawing Time Prediction of Foods
C. Ilicali (1999)
10.1016/S0260-8774(99)00068-0
Mass and thermal behaviour of the food surface during immersion freezing
T. Lucas (1999)
A computationally efficient technique for calculating simultaneous heat and mass transfer during food chilling, 20th International Congress of Refrigeration, Sydney
Q. T. Pham (1999)
Moving phase boundary problems, in Lectures on the Theory of Phase Transformations, 2nd Edition, H.I
R. F. Sekerka (1999)
10.1002/CJCE.5450780205
A generalized correlation of solute inclusion in ice formed from aqueous solutions and food liquids on sub-cooled surface
P. Chen (2000)
10.1021/bp000122v
High‐Pressure Shift Freezing. Part 1. Amount of Ice Instantaneously Formed in the Process
L. Otero (2000)
10.1179/026708300101507389
Modelling of non-equilibrium solidification in ternary alloys: comparison of 1D, 2D, and 3D cellular automaton–finite difference simulations
D. Jarvis (2000)
Individual quick freezing of foods by hydrofluidisation and pumpable ice slurries
K. A. Fikiin (2000)
10.1016/S0098-1354(00)00619-0
Comparison of finite difference and control volume methods for solving differential equations
G. Botte (2000)
10.1021/bp000018d
Modeling Conductive Heat Transfer during High‐Pressure Thawing Processes: Determination of Latent Heat as a Function of Pressure
S. Denys (2000)
10.1068/HTWU318
Volumetric behaviour of water under high pressure at subzero temperature
T. Sotani (2000)
10.1080/08327823.2000.11688421
Coupled Electromagnetic and Termal Modeling of Microwave Oven Heating of Foods
H. Zhang (2000)
Uncertainty Propagation Analysis of Coupled and Non-Linear Heat and Mass Transfer Models, PhD Thesis
N. Scheerlinck (2000)
10.1080/10789669.2001.10391278
Evaluation of Thermophysical Property Models for Foods
B. Fricke (2001)
10.1006/JCPH.2000.6657
Evolution, implementation, and application of level set and fast marching methods for advancing fronts
J. Sethian (2001)
10.1016/S0260-8774(00)00101-1
Weight loss during freezing and storage of unpackaged foods
L. A. Campañone (2001)
10.1006/JCPH.2000.6636
Level set methods: an overview and some recent results
S. Osher (2001)
10.1016/S0017-9310(00)00238-6
Freezing of a porous medium in contact with a concentrated aqueous freezant: numerical modelling of coupled heat and mass transport
T. Lucas (2001)
10.1002/1527-2648(200110)3:10<745::AID-ADEM745>3.0.CO;2-C
Mesoscale Simulation of Recrystallization Textures and Microstructures
D. Raabe (2001)
10.1016/S0140-7007(00)00081-5
Predicting local surface heat transfer coefficients by different turbulent k-ϵ models to simulate heat and moisture transfer during air-blast chilling
Z. Hu (2001)
10.13031/2013.4671
FINITE ELEMENT COMPUTATION OF UNSTEADY PHASE CHANGE HEAT TRANSFER DURING FREEZING OR THAWING OF FOOD USING A COMBINED ENTHALPY AND KIRCHHOFF TRANSFORM METHOD
N. Scheerlinck (2001)
Prediction of cooling/freezing/thawing time and heat load, in: Advances in Food Refrigeration (ed
Q. T. Pham (2001)
Progressive freeze-concentration: a new method for high quality concentration of liquid food
O. Miyawaki (2001)
10.1063/1.1461829
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
W. Wagner (2002)
10.1016/S0006-3495(02)75536-7
Kinetics and mechanism of intercellular ice propagation in a micropatterned tissue construct.
D. Irimia (2002)
10.1080/10407790190054003
A FINITE-VOLUME SHARP INTERFACE SCHEME FOR DENDRITIC GROWTH SIMULATIONS: COMPARISON WITH MICROSCOPIC SOLVABILITY THEORY
H. Udaykumar (2002)
10.1016/S0260-8774(01)00176-5
Microwave heating of foodstuffs
M.E.C. Oliveira (2002)
10.1115/1.1445134
Effect of Microscale Mass Transport and Phase Change on Numerical Prediction of Freezing in Biological Tissues
Ramachandra V. Devireddy (2002)
10.1146/ANNUREV.MATSCI.32.090601.152855
Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation
D. Raabe (2002)
10.1006/JCPH.2002.7084
The Front-Tracking ALE Method
M. Jaeger (2002)
10.1016/S0140-7007(01)00030-5
High pressure freezing and thawing of foods : a review
A. Le-Bail (2002)
PHASE-FIELD SIMULATION OF SOLIDIFICATION 1
W. J. Boettinger (2002)
10.1098/rsta.2002.1141
Nucleation of ice and its management in ecosystems
F. Franks (2003)
10.1016/S0140-7007(03)00051-3
Effective thermal conductivity of a high porosity model food at above and sub-freezing temperatures
N. Hamdami (2003)
10.1023/A:1025399807998
A Level Set Approach for the Numerical Simulation of Dendritic Growth
F. Gibou (2003)
10.1016/S0017-9310(03)00364-8
Simulation of micro-scale interaction between ice and biological cells
L. Mao (2003)
Numerical Heat Transfer, 59–78
sion-type problems (2003)
Thermophysical and engineering issues of the immersion freezing of fruits in ice slurries based on sugar-ethanol aqueous solution
K. Fikiin (2003)
10.1016/J.JCRYSGRO.2003.12.033
Morphology: from sharp interface to phase field models
R. Sekerka (2004)
10.1016/J.IJREFRIG.2004.03.016
SIMULATION OF COUPLED HEAT AND MASS TRANSFER DURING FREEZING OF A POROUS HUMID MATRIX SIMULATION DU TRANSFERT DE CHALEUR ET DE MASSE DANS UN MILIEU POREUX HUMIDE LORS DE LA CONGELATION
N. Hamdami (2004)
10.1016/J.FOODRES.2004.02.011
Heat and mass transfer in par-baked bread during freezing
N. Hamdami (2004)
10.1080/10407790490430606
A FIXED GRID FRONT-TRACKING MODEL OF THE GROWTH OF A COLUMNAR FRONT AND AN EQUIAXED GRAIN DURING SOLIDIFICATION OF AN ALLOY
D. Browne (2004)
10.1016/b978-0-444-51386-1.x5001-6
Crystal growth : from fundamentals to technology
G. Mueller (2004)
10.1016/J.IJREFRIG.2004.02.006
Heat transfer coefficients for forced-air cooling and freezing of selected foods
B. Becker (2004)
Heat and mass transfer simulation during freezing in bread, in Proceedings ICEF9 9th International Congress on Engineering and Foods, Montpellier (CDROM)
N. Hamdami (2004)
Prediction of thawing and freezing of bulk palletised butter
A Nahid (2004)
10.1016/J.JFOODENG.2004.09.006
Impact of selected process parameters on crust flaking of frozen partly baked bread
A. Bail (2005)
10.1529/BIOPHYSJ.104.048355
Kinetics of intracellular ice formation in one-dimensional arrays of interacting biological cells.
D. Irimia (2005)
10.1016/J.JFOODENG.2004.11.001
Stresses and cracking in freezing spherical foods : a numerical model
Q. Pham (2005)
10.1016/J.JFOODENG.2004.07.016
Tubular ice system for scale-up of progressive freeze-concentration
O. Miyawaki (2005)
10.1016/J.IJREFRIG.2005.01.012
Extension of soil thermal conductivity models to frozen meats with low and high fat content
V. Tarnawski (2005)
10.1016/J.JFOODENG.2004.03.026
Mathematical modeling for immersion chilling and freezing of foods: Part I: Model development
S. Zorrilla (2005)
10.1016/J.JFOODENG.2004.04.018
Predicting the initial freezing point and water activity of meat products from composition data
R. Sman (2005)
10.1016/J.IJREFRIG.2006.02.005
A review on surface heat and mass transfer coefficients during air chilling and storage of food products
A. Kondjoyan (2006)
10.1016/J.IJREFRIG.2006.01.013
Modelling heat and mass transfer in frozen foods: a review
Q. Pham (2006)
10.1111/J.1365-2621.2005.TB08317.X
Limiting partition coefficient in progressive freeze-concentration
X. Gu (2006)
10.1016/J.IJREFRIG.2006.05.001
A computational fluid dynamic model of the heat and moisture transfer during beef chilling
F. Trujillo (2006)
10.1016/J.IJREFRIG.2005.06.003
Analysis of stresses during the freezing of solid spherical foods
Q. Pham (2006)
Determination of thermal conductivity of frozen meat by finite element modelling
Q. Pham (2006)
10.1016/J.IJHEATMASSTRANSFER.2006.02.007
A new approach to modelling the effective thermal conductivity of heterogeneous materials
Jianfeng Wang (2006)
10.1016/J.JCP.2005.05.013
A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods
Lijian Tan (2006)
10.1080/10407790500292366
An Enthalpy Model for Simulation of Dendritic Growth
D. Pal (2006)
10.1016/J.CES.2006.08.075
Population balance and computational fluid dynamics modelling of ice crystallisation in a scraped surface freezer
Guoping Lian (2006)
Evaluation of the thermo
L. Otero (2006)
Modelling the freezing of single cartons of butter, Proceedings 11th Asian Pacific Confederation of Chemical Engineering (APCChe) Congress, Kuala Lumpur, Malaysia, 27–30/8/2006
A. Nahid (2006)
10.1016/j.jcp.2007.05.039
Modeling the interaction of biological cells with a solidifying interface
A. Chang (2007)
10.1111/J.1365-2621.1971.TB01620.X
Differential thermal analysis of frozen food systems. I. The determination of unfreezable water
R. Duckworth (2007)
10.1111/J.1365-2621.1979.TB00868.X
Histological measurements of ice in frozen beef
A. Bevilacqua (2007)
10.1016/J.IJREFRIG.2007.01.012
Thermal stresses during freezing of a two-layer food
Brice Tremeac (2007)
CHAPTER 3 Freezing and thawing of foods – computation methods and thermal properties correlation
H. Schwartzberg (2007)
10.1016/J.JFOODENG.2007.02.053
Two-stage freezing of part baked breads: Application and optimization
N. Hamdami (2007)
10.1016/J.JFOODENG.2007.05.034
Prediction of enthalpy and thermal conductivity of frozen meat and fish products from composition data
R. Sman (2008)
10.1016/J.IJHEATMASSTRANSFER.2007.08.028
A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases
Jianfeng Wang (2008)
10.1016/J.CALPHAD.2007.11.003
An introduction to phase-field modeling of microstructure evolution
N. Moelans (2008)
10.1016/J.IJHEATMASSTRANSFER.2007.04.025
An enthalpy method for modeling dendritic growth in a binary alloy
V. Voller (2008)
10.1016/J.IJREFRIG.2007.07.012
Modelling the freezing of butter
A. Nahid (2008)
10.1016/J.IJREFRIG.2008.04.007
Finite element model for beef chilling using CFD-generated heat transfer coefficients.
Q. Pham (2009)
10.1007/978-0-387-84865-5_11
Water in Dairy Products
D. Simatos (2009)
10.1002/9780470172599.CH19
Numerical Methods for Phase-Change Problems
V. Voller (2009)
10.1016/J.JFOODENG.2009.04.027
A comparison of two models for stresses and strains during food freezing.
A. McKellar (2009)
10.1002/9783527631520
Phase-Field Methods in Materials Science and Engineering
N. Provatas (2010)
10.1080/08327823.2010.11689787
Numerical Modeling of Continuous Flow Microwave Heating: A Critical Comparison of COMSOL and ANSYS
D. Salvi (2010)
10.1002/9780470958346
Handbook of Vegetables and Vegetable Processing
N. K. Sinha (2010)
10.1016/J.LWT.2010.03.017
Dielectric properties of foods: reported data in the 21st Century and their potential applications.
M. Sosa-Morales (2010)
Prediction of thermal conductivity for frozen foods with air voids
J. F. Wang (2010)
10.1063/1.3657937
New Equations for the Sublimation Pressure and Melting Pressure of H2O Ice Ih
W. Wagner (2011)
10.1016/J.IJHEATMASSTRANSFER.2010.10.022
A comparison of models and methods for simulating the microwave heating of moist foodstuffs
C. Budd (2011)
10.1016/J.COMMATSCI.2011.12.019
Comparison of phase-field and cellular automaton models for dendritic solidification in Al–Cu alloy
A. Choudhury (2012)
10.1063/1.3690497
Thermodynamics of supercooled water.
V. Holten (2012)
10.1016/j.jcp.2012.02.001
A coupled VOF-IBM-enthalpy approach for modeling motion and growth of equiaxed dendrites in a solidifying melt
S. Karagadde (2012)
10.1016/J.JFOODENG.2012.12.016
Enabling computer-aided food process engineering: Property estimation equations for transport phenomena-based models
Tushar Gulati (2013)
Final Answers, http://www.numericana.com/answer/ellipsoid.htm, accessed 18-Jan-2013
G. P. Michon (2013)
The Feynman Lectures on Physics, Chapter 18: The Maxwell Equations
R. P. Fenman (2013)
freezing processes by enthalpy method
Sun (2013)
10.1016/J.JFOODENG.2013.12.007
Freezing time formulas for foods with low moisture content, low freezing point and for cryogenic freezing
Q. Pham (2014)
Food Freezing and Thawing Calculations, SpringerBriefs in Food, Health, and Nutrition, DOI 10.1007/978-1-4939-0557-7
Index Q.T. Pham (2014)
10.2514/6.2016-1935
Simulation of high-pressure methane flames
G. Ribert (2016)



This paper is referenced by
10.1016/J.IJREFRIG.2021.02.002
Advantages in predicting conjugate freezing of meat in a domestic freezer by CFD with turbulence k-ɛ 3D model and a local exergy destruction analysis
N. Moraga (2021)
10.26656/FR.2017.5(3).598
Antioxidant increase by response surface optimization and Bayesian neural network modelling of pumpkin (Cucurbita moschata Duch) freezing
Y. Kristianto (2021)
Comprehensive Mathematical Model for Freezing Time Prediction of Finite Object
A. Bassani (2021)
10.1007/s12046-020-01496-x
Heat and mass transfer analysis on multiport mini channel shelf heat exchanger for freeze-drying application
G. Srinivasan (2020)
10.5219/1303
Effect of fuzzy-controlled slow freezing on pumpkin (Cucurbita Moschata Duch) cell disintegration and phenolics
Yohanes Kristianto (2020)
10.1016/j.ijrefrig.2020.06.015
Validated numerical model of heat transfer in the forced air freezing of bulk packed whole chickens
D. Hoang (2020)
10.1111/JFPP.14938
Effect of freezing rate on the quality properties of Medjool dates at the tamr stage
Samir G. Mowafy (2020)
10.1016/j.fbp.2019.10.013
Numerical and experimental study on the quick freezing process of the bayberry
Yuanheng Zhao (2020)
10.1088/1742-6596/1457/1/012018
A numerical approach for fish fillet modeling during freezing process _ Case study from Vietnamese catfish fillets
T. T. Nguyen (2020)
10.1007/978-3-030-40917-3_7
Cooling, Freezing, Thawing and Crystallization
E. Vorobiev (2020)
10.1007/s12393-020-09247-8
The Influence of Operation Parameters and Product Properties on Time-to-Temper for Frozen Raw Meat Based on Simulation
Shengyue Shan (2020)
THERMAL ANALYSIS OF FOOD PRODUCTS USING DIFFERENTIAL SCANNING CALORIMETRY (DSC)
Radoslav Grujić (2020)
10.1016/j.ijthermalsci.2020.106496
An improved layered thermal resistance model for solid-liquid phase change time estimation
M. Parsazadeh (2020)
10.1016/j.ijheatmasstransfer.2020.119831
Effects of nanoparticles on phase change heat transfer rate in the presence of Rayleigh–Benard convection
M. Parsazadeh (2020)
10.1016/j.ijrefrig.2020.07.026
FDM for the freezing process of a slab using integral average properties
S. R. Ferreira (2020)
10.14744/ejmi.2019.35267
New Cooltech Define® Cryoadipolysis Applicators: A Scientific and Comparative Study with Cooltech® Applicators
Gregorio Viera Mármol (2019)
10.1016/J.IJREFRIG.2018.11.009
Freezing times using time derivative of temperature on surface of foods
S. R. Ferreira (2019)
10.1111/jfpe.13296
Effect of cryogenic freezing combined with precooling on freezing rates and the quality of golden pomfret ( Trachinotus ovatus )
Yuanheng Zhao (2019)
10.1007/S00231-019-02596-Z
An experimental study of drying behaviour in ice patterns formed during spin freezing and its influence on the freeze-drying process
G. Srinivasan (2019)
10.1007/s11664-019-06936-x
Recyclable Phosphor Films: Three Water-Soluble Binder Systems Enabling the Recovery of Phosphor Powders in White LEDs
M. Hämmer (2019)
10.15407/CRYO28.04.343
A Comparative Study of Cooltech® Handpieces for Cryoadipolysis Using Numerical Simulation
Gregorio Viera-Mármol (2018)
10.1007/s11694-018-9869-2
Experimental determination of thermophysical properties by line heat pulse method
K. Kozłowicz (2018)
10.18462/IIR.GL.2018.1328
Energy optimization of batch freezing tunnel for meat.
J Kristofersson (2018)
10.1007/s12393-016-9157-z
Freezing of Foods: Mathematical and Experimental Aspects
Y. Zhao (2017)
10.1016/J.IJREFRIG.2017.01.007
Freezing time of a slab using the method of lines
S. R. Ferreira (2017)
10.1016/J.IJREFRIG.2016.01.021
Freezing time of an infinite cylinder and sphere using the method of lines
S. R. Ferreira (2016)
10.17113/FTB.54.01.16.4108
Review of Thawing Time Prediction Models Depending
on Process Conditions and Product Characteristics.
D. Góral (2016)
10.1016/J.JFOODENG.2015.12.006
Effective thermal conductivity prediction of foods using composition and temperature data
J. Carson (2016)
by Simulation and Thermographic Imaging
T. Tetzlaff (2015)
10.1109/EUROSIME.2015.7103133
Current load capacity of electrical conductor tracks evaluated by simulation and thermographic imaging
T. Tetzlaff (2015)
Semantic Scholar Logo Some data provided by SemanticScholar