← Back to Search

# Ambit Fields: Survey And New Challenges

M. Podolskij

Published 2014 · Mathematics

In this paper we present a survey on recent developments in the study of ambit fields and point out some open problems. Ambit fields is a class of spatio-temporal stochastic processes, which by its general structure constitutes a exible model for dynamical structures in time and/or in space. We will review their basic probabilistic properties, main stochastic integration concepts and recent limit theory for high frequency statistics of ambit fields.

This paper references

10.1016/0047-259X(83)90019-2

Central limit theorems for non-linear functionals of Gaussian fields

P. Breuer (1983)

10.1016/J.SPA.2007.05.004

Central limit theorems for multiple stochastic integrals and Malliavin calculus

D. Nualart (2007)

10.1016/J.SPA.2007.05.005

Asymptotic properties of realized power variations and related functionals of semimartingales

J. Jacod (2006)

10.1007/978-3-540-69532-5_3

Time Change, Volatility, and Turbulence

O. Barndorff-Nielsen (2008)

Limit theorems for Lévy moving average processes

A. Basse-O’Connor (2014)

10.2307/2290171

Limit Theorems for Stochastic Processes

J. Jacod (1987)

10.1016/J.SPA.2013.09.007

On stochastic integration for volatility modulated Levy-driven Volterra processes

O. Barndorff-Nielsen (2012)

10.1685/JOURNAL.CAIM.486

Asymptotics of weighted random sums

Jos'e Manuel Corcuera (2014)

10.1007/978-3-540-30788-4

From Stochastic Calculus to Mathematical Finance

Y. Kabanov (2006)

10.1142/S0219025714500118

On stochastic integration for volatility modulated Brownian driven Volterra processes via white noise analysis

O. Barndorff-Nielsen (2014)

10.1214/AOP/1008956692

Stochastic Calculus with Respect to Gaussian Processes

E. Alòs (2001)

10.1007/S00440-014-0609-1

On infinitely divisible semimartingales

A. Basse-O’Connor (2014)

10.3150/BJ/1082380223

On roughness indices for fractional fields

A. Benassi (2004)

10.1214/EJP.V13-526

Gaussian Moving Averages and Semimartingales

A. Basse (2008)

10.1016/j.spa.2014.01.005

Limit theorems for power variations of ambit fields driven by white noise

M. Pakkanen (2013)

10.1016/j.spa.2013.03.011

Asymptotic theory for Brownian semi-stationary processes with application to turbulence

Jos'e Manuel Corcuera (2012)

On non-standard limits of Brownian semistationary processes. To appear in Stochastic Processes and Their Applications

M. K. Gärtner (2014)

10.4064/BC104-0-2

Recent advances in ambit stochastics with a view towards tempo-spatial stochastic volatility/intermittency

O. Barndorff-Nielsen (2012)

10.1007/BF00339998

Spectral representations of infinitely divisible processes

B. Rajput (1989)

10.1016/J.SPA.2008.08.006

Estimation of quadratic variation for two-parameter diffusions

Anthony Reveillac (2008)

10.1016/J.SPA.2009.03.007

Lévy driven moving averages and semimartingales

A. Basse (2009)

10.1214/14-EJS942

Assessing Relative Volatility/Intermittency/Energy Dissipation

O. Barndorff-Nielsen (2013)

Tudor (2005): Gaussian limits for vector-values multiple stochastic integrals. In: Séminaire de Probabilités XXXVIII, Lecture Notes in Math., 1857

C.A.G. Peccati (2005)

Brownian Semistationary Processes and Volatility/Intermittency

O. Barndorff-Nielsen (2009)

10.1007/BF00535674

Convergence of integrated processes of arbitrary Hermite rank

M. Taqqu (1979)

10.1201/9781420011050.ch2

Spatio-Temporal Modelling — with a View to Biological Growth

E. Jensen (2007)

10.3150/15-BEJ696

Integration theory for infinite dimensional volatility modulated Volterra processes

F. Benth (2016)

10.1137/130905320

Approximating Lévy Semistationary Processes via Fourier Methods in the Context of Power Markets

F. Benth (2014)

10.2139/ssrn.1938704

Modelling Electricity Forward Markets by Ambit Fields

O. Barndorff-Nielsen (2011)

10.1007/978-3-540-31449-3_17

Gaussian Limits for Vector-valued Multiple Stochastic Integrals

G. Peccati (2005)

Limit theorems for stochastic processes, 2d Edition

A.N.J. Jacod (2002)

Structure of infinitely divisible semimartingales

A. Basse-O’Connor (2012)

10.1007/978-1-4757-2437-0

The Malliavin Calculus and Related Topics

D. Nualart (1995)

10.1016/J.EXMATH.2010.09.005

Stochastic integrals for spde's: a comparison

Robert C. Dalang (2010)

10.3150/BJ/1155735933

Power variation of some integral fractional processes

J. M. Corcuera (2006)

10.1214/009117904000000621

Central limit theorems for sequences of multiple stochastic integrals

D. Nualart (2005)

On stable sequences of events

A. Rényi (1963)

Limit theorems for stationary increments L\'evy driven moving averages

A. Basse-O’Connor (2015)

10.3150/15-BEJ707

Functional limit theorems for generalized variations of the fractional Brownian sheet

M. Pakkanen (2014)

10.1214/AOP/1176993006

Volterra Equations Driven by Semimartingales

P. Protter (1985)

10.3150/BJ/1165269152

Fractional Lévy processes with an application to long memory moving average processes

T. Marquardt (2006)

Spectral representation of infinitely divisible distributions

J. B. Rajput (1989)

10.1007/BFB0087956

Séminaire de probabilités XXVII

J. Azema (1993)

10.1007/978-3-642-24127-7

Discretization of Processes

J. Jacod (2011)

10.1016/J.SPA.2008.09.004

Power variation for Gaussian processes with stationary increments

O. Barndorff-Nielsen (2007)

10.1080/07362994.2014.962045

A Law of Large Numbers for the Power Variation of Fractional Lévy Processes

Sven Glaser (2015)

10.1007/BFB0087964

Moyennes mobiles et semimartingales

T. Jeulin (1993)

10.2139/ssrn.1411030

Multipower Variation for Brownian Semistationary Processes

O. Barndorff-Nielsen (2009)

10.1016/J.SPA.2014.09.019

On non-standard limits of Brownian semi-stationary processes

Kerstin Gärtner (2014)

10.1007/978-3-540-30788-4_3

A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales

O. Barndorff-Nielsen (2004)

Foundations of the Prediction Process. Volume 1 of Oxford Studies in Probability

F. B. Knight (1992)

10.1007/BFB0044678

Random measures and stochastic integration

K. Bichteler (1983)

10.1007/978-3-540-70847-6_5

Ambit Processes; with Applications to Turbulence and Tumour Growth

O. Barndorff-Nielsen (2007)

10.2139/ssrn.1528887

Limit Theorems for Functionals of Higher Order Differences of Brownian Semi-Stationary Processes

O. Barndorff-Nielsen (2009)

10.1214/AOP/1176995577

On Mixing and Stability of Limit Theorems

D. Aldous (1978)

10.3150/12-BEJ476

Modelling energy spot prices by volatility modulated Levy-driven Volterra processes

O. Barndorff-Nielsen (2013)

Malliavin calculus for Levy processes with applications to finance

M. Johansson (2004)

10.1007/BFB0074920

An introduction to stochastic partial differential equations

J. Walsh (1986)

10.1007/3-540-28329-3

The Malliavin Calculus and Related Topics

David Nualart Rodón (2006)

Foundations of the Prediction Process

F. B. Knight (1992)

10.3150/14-BEJ640

Integrability conditions for space-time stochastic integrals: Theory and applications

Carsten Chong (2015)

10.1007/S10959-010-0339-Y

Finite Variation of Fractional Lévy Processes

C. Bender (2010)

This paper is referenced by

10.3150/18-BEJ1044

The unusual properties of aggregated superpositions of Ornstein-Uhlenbeck type processes

Danijel Grahovac (2017)

A solution to a linear integral equation with an application to statistics of infinitely divisible moving averages

Jochen Gluck (2018)

Brownian semistationary processes and related processes

Orimar Sauri (2017)

An extension of the sewing lemma to hyper-cubes and hyperbolic equations driven by multi parameter Young fields

Fabian Andsem Harang (2018)

PR ] 5 F eb 2 01 5 Selfdecomposable Fields

O. Barndorff-Nielsen (2015)

10.1137/S0040585X97T988289

Incremental Similarity and Turbulence

Ole E. Barndorff-Nielsen (2015)

10.1007/s10959-015-0662-4

Lévy-driven Volterra Equations in Space and Time

Carsten Chong (2017)

High-frequency analysis of parabolic stochastic PDEs with multiplicative noise: Part I

Carsten Chong (2019)

10.1007/978-3-319-23425-0_5

Non-elliptic SPDEs and Ambit Fields: Existence of Densities

Marta Sanz-Sol'e (2016)

10.1515/fca-2016-0071

Fractional calculus and pathwise integration for Volterra processes driven by Lévy and martingale noise

Giulia Di Nunno (2016)

10.1111/STAN.12142

Statistical inference for moving‐average Lévy‐driven processes: Fourier‐based approach

Denis Belomestny (2017)

10.1007/978-3-319-94129-5_3

Asymptotic Theory for Power Variation of LSS Processes

Ole E. Barndorff-Nielsen (2018)

Bernoulli Low-frequency estimation of continuous-time moving average Lévy processes 1

D. Belomestny (2017)

Intermittency and infinite variance: the case of integrated supOU processes

Danijel Grahovac (2019)

10.1007/978-3-319-23425-0_1

Some Recent Developments in Ambit Stochastics

O. Barndorff-Nielsen (2016)

10.1007/978-3-319-45875-5_2

Gamma Kernels and BSS/LSS Processes

Ole E. Barndorff-Nielsen (2016)

PR ] 3 0 Ju l 2 01 4 Lévy-driven Volterra equations in space-time

Carsten Chong (2014)

Tempo-Spatial Stochastic Integral Processes: Theory and Applications

Carsten Chong (2015)

10.1016/J.SPA.2017.09.022

Equivalent martingale measures for L\'evy-driven moving averages and related processes

Andreas Basse-O’Connor (2017)

10.1155/2015/626020

An Ambit Stochastic Approach to Pricing Electricity Forward Contracts: The Case of the German Energy Market

Luca Di Persio (2015)

10.1007/978-3-319-23425-0_4

A Weak Limit Theorem for Numerical Approximation of Brownian Semi-stationary Processes

Mark Podolskij (2016)

10.4213/TVP5076

Incremental similarity and turbulence@@@Incremental similarity and turbulence

Ole E. Barndorff-Nielsen (2016)

PR ] 2 7 A pr 2 01 7 Equivalent martingale measures for Lévy-driven moving averages and related processes

A. Basse-O’Connor (2017)

10.17877/DE290R-16338

A distributional limit theorem for the realized power variation of linear fractional stable motions

S. Glaser (2015)

10.1007/978-3-319-94129-5_1

Volatility Modulated Volterra Processes

O. Barndorff-Nielsen (2018)

A Continuous Time GARCH(p,q) Process with Delay

Adam Nie (2018)

10.1007/s10959-015-0630-z

Selfdecomposable Fields

Ole E. Barndorff-Nielsen (2017)

Assessing Gamma kernels and BSS/LSS processes

O. Barndorff-Nielsen (2016)