Online citations, reference lists, and bibliographies.

Experimental Approaches Toward A Functional Understanding Of Insect Flight Control

S. Fry
Published 2010 · Biology, Computer Science

Cite This
Download PDF
Analyze on Scholarcy
Share
This chapter describes experimental approaches exploring free-flight control in insects at various levels, in view of the biomimetic design principles they may offer for MAVs. Low-level flight control is addressed with recent studies of the aerodynamics of free-flight control in the fruit fly. The ability to measure instantaneous kinematics and aerodynamic forces in free-flying insects provides a basis for the design of flapping airfoil MAVs. Intermediate-level flight control is addressed by presenting a behavioral system identification approach. In this work, the motion processing and speed control pathways of the fruit fly were reverse engineered based on transient visual flight speed responses, providing a quantitative control model suited for biomimetic implementation. Finally, high-level flight control is addressed with the analysis of landmark-based goal navigation, for which bees combine and adapt basic visuomotor reflexes in a context-dependent way. Adaptive control strategies are also likely suited for MAVs that need to perform in complex and unpredictable environments. The integrative analysis of flight control mechanisms in free-flying insects promises to move beyond isolated emulations of biological subsystems toward a generalized and rigorous approach.
This paper references
10.1016/0166-2236(89)90010-6
Principles of visual motion detection
A. Borst (1989)
10.1007/BF00612014
Compensation for height in the control of groundspeed byDrosophila in a new, ‘barber's pole’ wind tunnel
C. David (2004)
10.1098/rsif.2005.0036
Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria
G. Taylor (2005)
10.1098/rstb.1984.0049
The aerodynamics of hovering insect flight. I. The quasi-steady analysis
C. Ellington (1984)
10.1007/BF00288561
Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila
K. G. Götz (2004)
10.1080/09540090500140958
Biologically plausible visual homing methods based on optical flow techniques
A. Vardy (2005)
10.1007/PL00007973
Insect visual homing strategies in a robot with analog processing
Ralf Möller (2000)
10.1007/s00359-002-0316-8
Neural networks in the cockpit of the fly
A. Borst (2002)
10.1126/SCIENCE.1081944
The Aerodynamics of Free-Flight Maneuvers in Drosophila
S. Fry (2003)
10.1007/s004220100267
Fly-like visuomotor responses of a robot using aVLSI motion-sensitive chips
Shih-Chii Liu (2001)
10.1006/JTBI.2001.2295
Do insects use templates or parameters for landmark navigation?
R. Möller (2001)
10.1086/522095
Biorobotic Experiments for the Discovery of Biological Mechanisms
E. Datteri (2007)
10.1109/TRO.2005.858857
Fly-inspired visual steering of an ultralight indoor aircraft
J. Zufferey (2006)
10.1037/h0061885
The visual perception of objective motion and subjective movement.
J. Gibson (1954)
10.1126/SCIENCE.1123053
Biologically Inspired Artificial Compound Eyes
Ki-Hun Jeong (2006)
10.1016/S0065-3454(06)36003-2
Navigational Memories in Ants and Bees: Memory Retrieval When Selecting and Following Routes
T. Collett (2006)
10.1007/BF00657328
A model for landmark learning in the honey-bee
Alun M. Anderson (1977)
10.1016/j.jneumeth.2008.02.016
TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies
S. Fry (2008)
Visual stabilization in arthropods.
T. Collett (1993)
10.1007/978-3-642-67868-4_4
Spatial Vision in Arthropods
R. Wehner (1981)
10.1109/TRO.2006.875483
Flapping flight for biomimetic robotic insects: part II-flight control design
X. Deng (2006)
10.1007/BF00292106
Optomotorische Reaktionen der Fliege Musca Domestica
G. Fermi (2004)
10.1007/s004220050470
Where did I take that snapshot? Scene-based homing by image matching
M. Franz (1998)
10.1007/BF00695351
Chasing behaviour of houseflies (Fannia canicularis)
M. Land (2004)
10.1016/j.cub.2006.12.032
A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities
N. Franceschini (2007)
10.1016/S0921-8890(99)00064-0
A mobile robot employing insect strategies for navigation
D. Lambrinos (2000)
10.1016/S0165-0270(00)00253-3
Tracking of flying insects using pan-tilt cameras
S. Fry (2000)
10.1109/IROS.2007.4399495
Design, fabrication, and analysis of a 3DOF, 3cm flapping-wing MAV
R. Wood (2007)
10.1007/BF01131533
The significance of landmarks for path integration in homing honeybee foragers
L. Chittka (2005)
10.1007/BF01464710
Visual control of flight behaviour in the hoverflySyritta pipiens L.
T. Collett (2005)
10.1242/jeb.012625
New experimental approaches to the biology of flight control systems
G. Taylor (2008)
10.1016/S0960-9822(02)01141-7
Virtual-Reality Techniques Resolve the Visual Cues Used by Fruit Flies to Evaluate Object Distances
S. Schuster (2002)
10.1007/s00359-001-0272-8
Honey bees store landmarks in an egocentric frame of reference
S. Fry (2002)
10.1007/BF00605469
Landmark learning in bees
B. A. Cartwright (2004)
10.1109/TRO.2008.916997
The First Takeoff of a Biologically Inspired At-Scale Robotic Insect
R. Wood (2008)
10.1109/ROBOT.2002.1013339
Halteres for the micromechanical flying insect
W. Wu (2002)
10.1007/978-1-4613-2743-1_16
Behavioural Analysis of Spatial Vision in Insects
E. Buchner (1984)
10.1515/znb-1956-9-1004
Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus
B. Hassenstein (1956)
10.1242/jeb.01612
The aerodynamics of hovering flight in Drosophila
S. Fry (2005)
10.1242/jeb.020768
Visual control of flight speed in Drosophila melanogaster
S. Fry (2009)
10.1109/TRO.2006.875480
Flapping flight for biomimetic robotic insects: part I-system modeling
X. Deng (2006)
10.1242/jeb.01266
The effect of advance ratio on the aerodynamics of revolving wings
W. B. Dickson (2004)
The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.
S. Sane (2002)
10.1146/ANNUREV.NEURO.27.070203.144343
Visual motor computations in insects.
M. Srinivasan (2004)
Quick estimates of flight fitness in hovering animals
T. Weis-Fogh (1973)
10.1016/S0959-4388(02)00390-2
Vision in flying insects
M. Egelhaaf (2002)
Decoding of retinal image flow in insects.
K. Hausen (1993)
10.1016/S0065-2806(07)34005-8
Sensory Systems and Flight Stability: What do Insects Measure and Why?
G. Taylor (2007)
Honeybee navigation en route to the goal: visual flight control and odometry
Srinivasan (1996)
10.1088/1741-2560/3/3/R01
Validating biorobotic models.
B. Webb (2006)
10.1038/295560a0
How honey bees use landmarks to guide their return to a food source
B. A. Cartwright (1982)
10.1242/jeb.02552
Response characteristics of visual altitude control system in Bombus terrestris
K. Tanaka (2006)
10.1098/rspb.2002.2240
Chasing a dummy target: smooth pursuit and velocity control in male blowflies
N. Boeddeker (2003)
10.1073/PNAS.96.25.14208
Bionics: biological insight into mechanical design.
M. Dickinson (1999)
10.1109/ROBOT.2003.1241747
Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results
W. Wu (2003)
10.1242/jeb.00115
The influence of beacon-aiming on the routes of wood ants
P. Graham (2003)
10.1242/jeb.01833
Look and turn: landmark-based goal navigation in honey bees
S. Fry (2005)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar