Online citations, reference lists, and bibliographies.
← Back to Search

Testing And Performance Of Fiber-reinforced, Self-consolidating Concrete

K. H. Khayat, Y. Roussel
Published 2000 · Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
The casting of fiber-reinforced concrete presents greater handling difficulty and requires more deliberate planning and workmanship than conventional concrete without fibers. The feasibility of producing fiber-reinforced, self-consolidating concrete (FR-SCC) that can be cast into place with minimum or no consolidation was investigated. Sixteen mixtures made with steel fibers measuring 38 mm in length used at dosages of 0, 0.5, and 1%, by volume, were investigated. The mixtures were prepared with various types of binary and ternary cementitious materials and W/CM of 0.37 to 0.45. The higher W/CM mixtures incorporated a viscosity-enhancing agent to reduce the risk of segregation. Concrete mixtures with slump flow consistencies of 650 and 530 mm were prepared, with the latter representing a highly flowable concrete that would require some consolidation. The characteristics of these mixtures were compared to those of a conventional fiber-reinforced concrete with a targeted slump consistency of 200 mm. The mixtures were tested for rheological parameters using a concrete viscometer, for restricted deformability using the filling capacity and V-funnel flow tests, as well as for compressive strength and flexural toughness. The paper evaluates the suitability of using the above workability tests to assess restricted deformability of FR-SCC and discusses the effect of fiber volume, mixture proportioning, and consistency on concrete properties.RésuméL'utilisation de fibres métalliques dans le béton améliore plusieurs de ses caractéristiques. Cependant, les bétons avec fibres sont plus difficiles à mettre en place et requièrent donc une planification et une main-d'oeuvre plus importante. La possibilité de produire des bétons autoplaçants renforcés de fibres métalliques qui peuvent être mis en place avec peu ou pas de consolidation a été évaluée. Seize mélanges de béton, faits avec des fibres d'acier de 38 mm de longueur à des dosages de 0, 0,5 et 1,0% en volume, ont été confectionnés. Les mélanges ont été préparés avec différents types de liant binaire et ternaire et un rapport E/L de 0,37 à 0,45. Les bétons ayant un plus haut rapport E/C contenaient un agent de viscosité pour assurer la stabilité du mélange. Des bétons autoplaçants avec un étalement de 650 et 530 mm ont été fabriqués. Les mélanges de béton de 530 mm d'étalement, tout en étant très fluides, requièrent une énergie de consolidation limitée. Les caractéristiques de ces mélanges ont été comparées à un béton conventionnel avec fibres de 200 mm d'affaissement. La mesure des paramètres rhéologiques à l'aide d'un rhéomètre à béton a été faite, ainsi que la mesure de la déformabilité restreinte à l'aide de la capacité de remplissage et du test de l'entonnoir. De plus, la résistance à la compression ainsi que la ténacité à la flexion ont été déterminées. Cet article évalue la pertinence de l'utilisation de ces essais pour obtenir la déformabilité restreinte des bétons autoplaçants avec fibres et discute de l'effet du volume de fibre, des proportions du mélange et de la consistance sur les propriétés du mélange.
This paper references



This paper is referenced by
10.1016/J.CEMCONCOMP.2011.03.007
Characterization of self-compacting concretes prepared with different fibers and mineral additions
V. Corinaldesi (2011)
POLYVINYL ALCOHOL (PVA) FIBER-REINFORCED RUBBER CONCRETE AND RUBBERIZED SELF-COMPACTING CONCRETE
Jiaqing Wang (2017)
10.1016/J.JCLEPRO.2018.01.180
Evaluation of laboratory performance of self-consolidating concrete with recycled tire rubber
Ruizhe Si (2018)
10.1016/J.IJTST.2019.06.002
Behavioral study of self-compacting concrete with wollastonite microfiber as part replacement of sand for pavement quality concrete (PQC)
Abhishek Jindal (2020)
10.1533/9780857095282.2.229
Fibre reinforcement and the rheology of concrete
Steffen Grünewald (2012)
10.14359/51663207
Effect of Different Fibers and Mineral Additions on the Performance of FRSCC
Corinaldesi (2009)
10.23918/IEC2018.15
Self-Compacting Concrete Reinforced with Steel Fibers from Scrap Tires: Rheological and Mechanical Properties
K. H. Younis (2018)
Effect of Polypropylene Fibers on Development of Fresh and Hardened Properties of Recycled Self-compacting Concrete
Mounir M. Kamal (2013)
10.1061/(ASCE)ST.1943-541X.0001165
Behavior of Rectangular Columns Constructed with SCC and Steel Fibers
Hassan Aoude (2015)
EVALUATION OF MECHANICAL PROPERTIES OF HIGH PERFORMANCE SELF-CONSOLIDATED CONCRETE ENHANCED BY DISCRETE STEEL AND POLYPROPYLENE FIBERS
Ali A. Abdulhameed (2017)
10.1201/B18688-8
Precast and special concretes
Alan Poole (2015)
10.1016/J.ISTRUC.2018.07.015
Performance of Fiber-reinforced Self-consolidating Concrete for Repair of Bridge Substructures
Mahdi Arezoumandi (2018)
Flexural Performance and Toughness Evaluation of Hybrid Steel- Polypropylene Fibre Reinforced Self Compacting Concrete
S. Bawa (2018)
10.3233/IFS-151847
Structural behaviour of deep beam using S.C.C. with chopped strands and polypropylene fibre
K. R. Kumar (2016)
10.1617/S11527-013-0221-3
Optimized workability and mechanical properties of FRCM by using fiber factor approach: theoretical and experimental study
A. Emdadi (2015)
10.14359/51686722
Mixture Design and Testing of Fiber-Reinforced Self‑Consolidating Concrete
K. Khayat (2014)
10.1080/01694243.2020.1712769
Strengthening of ordinary vibrated concrete using steel fibers self-compacting concrete
Ismail Zemir (2020)
10.1016/J.CONBUILDMAT.2012.07.057
A comprehensive methodology to test the performance of Steel Fibre Reinforced Self-Compacting Concrete (SFR-SCC)
L. Ferrara (2012)
10.1080/19648189.2014.929537
Experimental study on steel fibre reinforced self-compacting concrete incorporating high volume of marble powder
N. Haddadou (2015)
10.5703/1288284316107
Research on Chloride Penetration Resistance of Hybrid Fiber Reinforced Self-Compacting Concrete
Wu-Jian Long (2016)
10.14359/51689244
Assessment of Static Stability of Concrete Using Shear Wave Velocity Approach
Siwar Naji (2017)
SELF-CONSOLIDATING HIGH PERFORMANCE FIBER REINFORCED CONCRETE ( SCHPFRC ) – PRELIMINARY
W. Liao (2006)
10.1016/J.COMPOSITESB.2013.08.002
Combined effect of steel fiber and metakaolin incorporation on mechanical properties of concrete
Erhan Güneyisi (2014)
10.1016/B978-075065686-3/50295-0
9 – Self-compacting concrete
Rob Gaimster (2003)
10.20431/2454-8693.0401006
Some Parameters Affecting the Behavior of Strengthening of Rectangular R.C. Beams Failed in Shear by Using C.F.R.P.
Assem Nan SaleebKaldes (2018)
10.1016/j.jmrt.2020.02.042
Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete
A. M. Zeyad (2020)
10.1533/9780857093103.287
THE USE OF VISCOSITY ENHANCING ADMIXTURES TO IMPROVE THE HOMOGENEITY OF FIBRE DISTRIBUTION IN STEEL FIBRE REINFORCED CONCRETES
L. Ferrara (2003)
10.1088/2053-1591/AACDDE
Effect of carbon nanofibers on rheological and mechanical properties of cement composites
Baomin Wang (2018)
Comportement du béton autoplaçant fibré à la résistance d'adhésion et la résistance au cisaillement = Bond strength and shear strength of fiber-reinforced self-consolidating concrete
Soroush Amiri (2017)
10.1007/978-981-13-6148-7_38
Mixed Influence of Metakaolin (MK) and Steel Fiber on Mechanical Properties of Concrete
Pratik B. Shinde (2019)
10.1016/J.CEMCONRES.2003.07.005
Durable fiber reinforced self-compacting concrete
V. Corinaldesi (2004)
10.1108/17260531011086144
The effect of type and volume fraction (VF) of steel fiber on the mechanical properties of self‐compacting concrete
S. Ghanbarpour (2010)
See more
Semantic Scholar Logo Some data provided by SemanticScholar