Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Fundamental Processes Of Craze Growth And Fracture

E. Kramer, L. Berger
Published 1990 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Recent advances in quantitative microscopy and low-angle electron diffraction methods have made it possible to probe the fundamental processes of craze fibril formation and craze fibril breakdown. Both the scale of fibrillation within the craze and the magnitude of the crazing stress may be successfully described by a variant of the Taylor meniscus instability process. Within this framework, the key parameter in governing craze growth is the craze surface energy Γ. In turn Γ reflects the mechanism by which entangled strands are lost (through either chain scission or chain disentanglement) in producing the surfaces of the craze fibrils. A new model, which describes the temperature, strain rate and molecular weight dependence of the crazing stress is presented. This approach provides a clear rationale for the hitherto confusing data on crazing to shear deformation transitions in a wide variety of polymers. Moreover, the modification of the polymer network during craze formation has important implications for craze breakdown. In particular, at low temperatures where chain scission is the dominant process, the molecular weight of the polymer in the fibrils is markedly reduced. A molecular description of craze fibril breakdown based on microscopic measurements of the scale of the fibrillation in the craze and the statistics of craze fibril breakdown is proposed. Satisfactory agreement between the predictions of this model and the experimental data for a variety of glassy polymers is found.
This paper references
10.1002/MACP.1986.021870222
Black crazes ― white crazes?
O. Gebizlioglu (1986)
10.1021/MA00161A040
Crazes in diluted entanglement networks of polystyrene
A. C. Yang (1986)
10.1007/BF00700782
The disentanglement time of the craze fibrils in polymethylmethacrylate
P. Trassaert (1983)
10.1002/PEN.760241006
Craze fibril formation and breakdown
E. Kramer (1984)
10.1016/0032-3861(74)90185-2
Dependence of fracture surface energy of PMMA on molecular weight
R. Kusy (1974)
10.1088/0370-1328/92/1/303
The statistical mechanics of polymerized material
S. Edwards (1967)
10.1063/1.3057989
Viscoelastic properties of polymers
J. D. Ferry (1961)
10.1007/BF01086466
Microdeformation in partially compatible blends of poly(styrene-acrylonitrile) and polycarbonate
L. Berger (1987)
10.1016/0032-3861(82)90353-6
Effect of strain history on craze microstructure
A. Donald (1982)
10.1098/rspa.1975.0084
Fracture processes in polystyrene
P. Beahan (1975)
10.1007/BF02397790
Effect of crazes on the propagation of cracks in polystyrene
D. Hull (1970)
10.1021/MA60065A040
Entanglement Networks of 1,2-Polybutadiene Cross-Linked in States of Strain. 6. The Second State of Ease
Hsin-Chia Kan (1978)
10.1007/PL00020228
Crazing mechanisms and craze healing in glassy polymers
C. Plummer (1989)
10.1007/BF00719745
Geometrically necessary entanglement loss during crazing of polymers
C. C. Kuo (1985)
10.1016/0025-5416(76)90198-1
The mechanism of fracture in glassy materials capable of some inelastic deformation
A. S. Argon (1976)
10.1007/BF01458336
Electron microscopic investigations of the structure of crazes in polystyrene
G. Michler (1985)
10.1002/POLB.1987.090250810
Low‐angle electron diffraction from high temperature polystyrene crazes
L. Berger (1987)
10.1021/MA00197A044
Relationship between craze microstructure and molecular entanglements in glassy polymers. 1
L. Berger (1989)
10.1007/BF00553279
Loss of entanglement density during crazing
C. S. Henkee (1986)
10.1002/POLB.1986.090241114
The role of chain scission in fracture of amorphous polymers
J. Willett (1986)
10.1111/j.1365-2818.1981.tb02477.x
Crazes in osmium tetroxide stained styrene polymers
R. Kruse (1981)
10.1002/PEN.760211417
Craze healing in polymer glasses
R. P. Wool (1981)
10.1021/BA-1976-0154.CH007
The Fracture Energy of Low Molecular Weight Fractions of Polystyrene
R. Robertson (1976)
10.1007/BF01028352
Measurement of craze density by quantitative transmission electron microscopy
H. Brown (1979)
10.1021/MA60037A016
Entanglement Networks of 1,2-Polybutadiene Cross-Linked in States of Strain. I. Cross-Linking at 0 °
O. Kramer (1974)
10.1021/MA60043A023
Entanglement Networks of 1,2-Polybutadiene Cross-Linked in States of Strain. II. Application of the Mooney-Rivlin Equation to Networks Cross-Linked at O°
O. Kramer (1975)
10.1002/POL.1982.180200512
Effect of molecular entanglements on craze microstructure in glassy polymers
A. Donald (1982)
10.1021/MA60069A030
Entanglement Networks of 1,2-Polybutadiene Cross-Linked in States of Strain. 8. Trapping of Entanglements in Relaxed and Unrelaxed Configurations
Hsin-Chia Kan (1979)
10.1002/APP.1978.070220202
Entanglement networks of 1,2-polybutadiene crosslinked in states of strain. IV. States of ease and stress–strain behavior
R. L. Carpenter (1978)
10.1080/14786437608221089
Finger-like crack growth in solids and liquids
R. Fields (1976)
10.1007/BFB0117396
Röntgenkleinwinkel-Untersuchungen zur Struktur der Crazes (Fließzonen) in Polycarbonat und Polymethlmethacrylat
E. Paredes (1979)
10.1021/MA00192A081
New mechanism for craze toughening of glassy polymers
H. Brown (1989)
10.1002/POL.1973.230070101
A review of crazing and fracture in thermoplastics
R. P. Kambour (1973)
10.1021/MA00161A039
Craze fibril stability and breakdown in polystyrene
A. C. Yang (1986)
10.1080/01418617908239285
Microscopic mechanisms and mechanics of craze growth and fracture
B. Lauterwasser (1979)
10.1002/PEN.760190408
Entanglement networks of 1,2‐polybutadiene cross‐linked in states of strain. V. Relaxation phenomena and calculations of entanglement trapping
R. L. Carpenter (1979)
Developments in polymer fracture
E. H. Andrews (1979)
10.1007/BF00540492
The effect of temperature on the transition from crazing to shear deformation in crosslinked polystyrene
L. Berger (1988)
10.1080/00222348108015315
Craze microstructure from small-angle x-ray scattering (SAXS)
H. Brown (1981)
10.1002/APP.1978.070220723
Microstructure and its relationship to deformation processes in amorphous polymer glasses
Stephen T. Wellinghoff (1978)
10.1002/PEN.760221606
Observation of molecular chain scission during crazing of polystyrene
R. Popli (1982)
10.1007/BF00556095
The effect of temperature on crazing mechanisms in polystyrene
A. Donald (1985)
10.1007/BF01422006
Electron microscopic investigations of initiation and growth of crazes in polystyrene
G. Michler (1986)
10.1007/BF00540402
The competition between shear deformation and crazing in glassy polymers
A. Donald (1982)
10.1002/POL.1979.180171103
Entanglement networks of 1,2-polybutadiene crosslinked in states of strain. VII. Stress-birefringence relations. [Gamma radiation]
Hsin-Chia Kan (1979)
10.1002/PEN.760241010
Craze failure by midrib creep
N. Verheulpen-Heymans (1984)
10.1007/BF02403008
Craze microstructure characterization by low-angle electron diffraction and Fourier transforms of craze images
Arnold C. -M. Yang (1986)
10.1016/0032-3861(82)90191-4
The micromechanics and microstructure of CO2 crazes in polystyrene
Wen-Chou V. Wang (1982)
10.1002/POL.1985.180230705
Craze fibril structure and coalescence by low‐angle electron diffraction
A. C. Yang (1985)
10.1016/0304-3991(82)90173-5
A simple technique for the measurement of inner potentials with particular application to polymeric materials
H. Brown (1982)
10.1021/MA00174A049
Chain disentanglement during high-temperature crazing of polystyrene
L. Berger (1987)
10.1016/0032-3861(82)90354-8
Craze microstructure and molecular entanglements in polystyrene-poly(phenylene oxide) blends
A. Donald (1982)
10.1021/ma60055a024
Entanglement Networks of 1,2-Polybutadiene Cross-Linked in States of Strain. 3. Effect of Temperature
R. L. Carpenter (1977)
10.1007/BF00855428
Deformation and fracture of polymers
V. A. Stepanov (1975)
10.1002/POL.1983.180210312
The use of small-angle electron scattering to compare the structure of craze found in thin films with that found in bulk materials
H. Brown (1983)
10.1080/01418618108239496
The mechanism for craze-tip advance in glassy polymers
A. Donald (1981)
10.1002/APP.1974.070180814
Crazing studies of polystyrene. I. A new phenomenological observation
J. Fellers (1974)
10.1002/POL.1972.160100314
Effect of molecular weight on the tensile strength of glassy plastics
A. N. Gent (1972)



This paper is referenced by
10.1080/15321799608009645
Prediction of the Properties of Polymers from Their Structures
J. Bicerano (1996)
10.1016/S0167-6636(99)00044-7
Modeling of crazing using a cohesive surface methodology
M. Tijssens (2000)
Morphology and Properties of Low-Density Polyethylene and Rice-Starch Composites
Y.-J. Wang (2006)
10.1016/J.JMPS.2013.01.011
Identification of a cohesive zone model from digital images at the micron-scale
J. Réthoré (2013)
10.1016/J.EUROMECHSOL.2015.11.007
Continuum-micromechanical modeling of distributed crazing in rubber-toughened polymers
M. Helbig (2016)
10.1016/B978-0-12-803581-8.00904-8
Fatigue of Polymers
L. A. Pruitt (2014)
10.3390/polym12020478
Study of POSS on the Properties of Novel Inorganic Dental Composite Resin
J. Wang (2020)
10.1016/S0022-5096(00)00016-8
Modeling of the competition between shear yielding and crazing in glassy polymers
R. Estevez (2000)
10.1016/B978-044451140-9/50005-6
Chapter 5 – Micro-mechanical processes in adhesion and fracture
H. Brown (2002)
10.18419/OPUS-613
Phase field modeling of fracture in rubbery and glassy polymers at finite thermo-viscoelastic deformations
Lisa-Marie Schänzel (2015)
10.1177/105678959700600103
Modelling of Damage Evolution in Laminated Viscoelastic Composites
D. Allen (1997)
10.1016/S0032-3861(02)00373-7
Relation between molecular structure and flow instability for ethylene/ α-olefin copolymers
M. Yamaguchi (2002)
10.1016/J.JMPS.2008.01.006
Continuum modeling of a porous solid with pressure-sensitive dilatant matrix
T. Guo (2008)
10.1016/J.POLYMER.2018.06.016
Two-dimensional scattering patterns of polymers in elongated polymer networks and composites
K. Hagita (2018)
10.1007/S10704-005-2182-1
Analysis of temperature effects near mode I cracks in glassy polymers
R. Estevez (2005)
10.1122/1.2135330
Interfacial slip reduces polymer-polymer adhesion during coextrusion
Jianbin Zhang (2006)
10.1080/00218460600646594
Adhesive and Rheological Properties of Lightly Crosslinked Model Acrylic Networks
A. Lindner (2006)
10.1007/BF00356729
Environmental stress cracking of PVC and PVC-CPE
J. Breen (1995)
10.1002/APP.20189
Effect of molecular weight on brittle‐to‐ductile transition temperature of polyetherimide
M. Sanner (2004)
Modeling of Crazing in Rubber-toughened Polymers with LS-DYNA ®
M. Helbig (2018)
10.1140/epje/i2013-13007-2
Relaxation of non-equilibrium entanglement networks in thin polymer films
J. D. McGraw (2013)
10.1007/978-94-011-5850-3_5
The post-yield deformation of glassy polymers
M. Boyce (1997)
10.1002/(SICI)1099-0488(20000401)38:7<965::AID-POLB7>3.0.CO;2-8
Micromechanics of flat‐probe adhesion tests of soft viscoelastic polymer films
C. Creton (2000)
10.1016/B978-012763952-9/50007-1
6 – FUNDAMENTALS OF FRACTURE IN BIO-BASED POLYMERS
R. P. Wool (2005)
Tensile deformation of polymer glasses: Crazing, the brittle-ductile transition and elastic yielding
S. Cheng (2013)
Unstable Systems of Viscous and Elastic Polymer Thin Films
John F. Niven (2020)
10.1016/0032-3861(92)90137-L
Particle entrapping by crazes in HIPS
C. Maestrini (1992)
10.1016/0032-3861(92)90099-I
A statistical approach to slow crack propagation in craze-prone polymers
C. Maestrini (1992)
10.1016/j.polymer.2020.122985
Understanding the brittle-ductile transition of glass polymer on mesoscopic scale by in-situ small angle X-ray scattering
Qi Yan (2020)
10.1007/BF00544450
The effect of cross-linking on crazing in polyethersulphone
C. Plummer (1991)
10.1016/B0-08-043749-4/04067-2
4.15 – Fatigue of Polymers
L. A. Pruitt (2003)
10.1002/APP.20015
Effects of glycerol and PE‐g‐MA on morphology, thermal and tensile properties of LDPE and rice starch blends
Ya-Jane Wang (2004)
See more
Semantic Scholar Logo Some data provided by SemanticScholar