Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Glassy State Relaxation And Deformation In Polymers

T. Chow
Published 1992 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy
Share
An overview of a nonequilibrium glass theory is presented to describe the structural relaxation and deformation kinetics of polymeric glasses, compatible blends, and particulate composites. The glassy state relaxation is a result of the local configurational rearrangements of molecular segments, and the dynamics of holes (free volumes) provide a quantitative description of the segmental mobility. On the basis of the dynamics of hole motion, a unified physical picture has emerged which enables us to discuss the structure relaxation, physical aging, and glassy state deformation. The links between the bulk and shear relaxations, the change in deformation from linear to nonlinear viscoelastic responses, and the nonlinear viscoelastic nature of plastic deformation are discussed. Theoretical expressions are presented for the determination of the PVT (pressure-volume-temperature) behavior, for the elucidation of the equilibrium and nonequilibrium nature of the glass transition, for the calculation of viscoelastic response, and for the prediction of yield behavior and stress-strain relationships of these polymeric systems.
This paper references
10.1103/PHYSREVB.20.1077
Liquid-glass transition, a free-volume approach
M. H. Cohen (1979)
10.1122/1.549867
New PVT Equations for Polymeric Liquids and Glasses
T. F. Chow (1986)
10.1002/POL.1982.180200805
Pressure‐volume‐temperature properties of blends of poly(2,6‐dimethyl‐1,4‐phenylene ether) with polystyrene
Paul Zoller (1982)
10.1002/POL.1979.180170701
Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory
A. Kovács (1979)
10.2307/2323761
Fractal Geometry of Nature
B. Mandelbrot (1977)
10.1016/0032-3861(83)90084-8
Viscosity of ionomer gels
A. E. González (1983)
10.1063/1.1696442
On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids
G. Adam (1965)
10.1063/1.325793
Modeling of tensile properties of polymer blends: PPO/poly(styrene‐co‐p‐chlorostyrene)
J. Fried (1979)
10.1007/BF00554178
The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests
C. Bauwens-Crowet (1972)
10.1016/0032-3861(91)90366-Q
VISCOELASTIC RELAXATION IN ORIENTED SEMICRYSTALLINE POLYMERS
T. Chow (1991)
10.1051/JPHYSLET:019820043017062500
Density of states on fractals : « fractons »
S. Alexander (1982)
10.1111/J.1151-2916.1976.TB09377.X
Analysis of Structural Relaxation in Glass Using Rate Heating Data
M. A. Debolt (1976)
Physical aging in amorphous polymers and other materials
L. Struik (1978)
10.1177/002199836800200303
Effect of Fillers and Voids on Compressive Yield of Epoxy Composites
O. Ishai (1968)
10.1016/0032-3861(91)90557-Y
Prediction of stress-strain relationships in polymer composites
T. F. Chow (1991)
10.1021/MA00223A024
Nonequilibrium interaction and stress anomaly in compatible polymer blends
T. Chow (1990)
10.1021/MA00192A032
The role chain conformation in the theory of glasses. 1. The glass transition
T. Chow (1989)
10.1063/1.1709094
Rheo‐optical Properties of Polyvinyl Chloride Films: Unplasticized Homopolymer
R. D. Andrews (1967)
10.1021/MA00134A064
Free volume and the kinetics of aging of polymer glasses
R. E. Robertson (1984)
10.1002/POL.1982.180201109
Crack propagation in poly(2,6-dimethyl-1,4-phenylene oxide), polystyrene, and their blends†
R. P. Kambour (1982)
10.1021/MA00142A034
Temperature dependence of neutron scattering behavior and resultant thermodynamics of mixing of poly(2,6-dimethyl-1,4-phenylene oxide) in polystyrene
A. Maconnachie (1984)
10.1063/1.1744141
Nature of the Glass Transition and the Glassy State
J. Gibbs (1958)
10.1007/BF01382394
Einfluß der thermischen Vorgeschichte auf die mechanischen Eigenschaften von amorphen Thermoplasten
H. Ott (1980)
10.1063/1.3057989
Viscoelastic properties of polymers
J. D. Ferry (1961)
10.1063/1.327458
On the hygrothermomechanical characterization of polyvinyl acetate
W. Knauss (1980)
10.1021/MA00192A033
The role chain conformation in the theory of glasses. 2. Enthalpy relaxation
T. Chow (1989)
10.1295/POLYMJ.17.321
Prediction of Stress-Strain Relationships in Glassy and Crystalline Polymers
S. Matsuoka (1985)
10.1002/POL.1978.180160602
Effect of particle shape at finite concentration on the elastic moduli of filled polymers
T. Chow (1978)
10.1063/1.1749836
Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates
H. Eyring (1936)
10.1103/PHYSREVLETT.53.926
Statics and dynamics of polymeric fractals
M. E. Cates (1984)
10.1007/BF03372185
Viscoelastic properties of glass-forming polymers
T. F. Chow (1990)
10.1088/0508-3443/17/1/302
The mechanical properties of solid polymers
I. Ward (1966)
Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten
H. Vogel (1921)
10.1021/JA01619A008
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
M. Williams (1955)
10.1063/1.1699894
Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free‐Space
A. K. Doolittle (1951)
10.1016/0032-3861(88)90309-6
Molecular interpretation and prediction of the dynamic viscoelastic properties of crosslinked polymers
T. Chow (1988)
10.1007/BFB0114031
Influence of physical aging at constant temperature on the shear creep of amorphous polymers
F. Schwarzl (1985)
10.1021/MA00141A024
Kinetics of free volume and physical aging in polymer glasses
T. Chow (1984)
10.1021/MA00157A082
Adam-Gibbs formulation of nonlinearity in glassy-state relaxations
I. Hodge (1986)
10.1002/APP.1965.070090403
Dynamic and tensile properties of epoxy resins
D. Kaelble (1965)
10.1002/POLB.1987.090250110
Fundamental relationship between the nonequilibrium glassy state and yield stress of amorphous polymers
T. Chow (1987)
10.6028/JRES.078A.018
PVT Relationships for Liquid and Glassy Poly(vinyl acetate).
J. E. McKinney (1974)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar