Online citations, reference lists, and bibliographies.
← Back to Search

Adjuvant Intensity-modulated Proton Therapy In Malignant Pleural Mesothelioma

S. Lorentini, M. Amichetti, L. Spiazzi, S. Tonoli, S. Magrini, F. Fellin, M. Schwarz
Published 2011 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
PurposeIntensity-modulated radiation therapy (IMRT) is the state-of-the-art treatment for patients with malignant pleural mesothelioma (MPM). The goal of this work was to assess whether intensity-modulated proton therapy (IMPT) could further improve the dosimetric results allowed by IMRT.Patients and methodsWe re-planned 7 MPM cases using both photons and protons, by carrying out IMRT and IMPT plans. For both techniques, conventional dose comparisons and normal tissue complication probability (NTCP) analysis were performed. In 3 cases, additional IMPT plans were generated with different beam dimensions.ResultsIMPT allowed a slight improvement in target coverage and clear advantages in dose conformity (p < 0.001) and dose homogeneity (p = 0.01). Better organ at risk (OAR) sparing was obtained with IMPT, in particular for the liver (Dmean reduction of 9.5 Gy, p = 0.001) and ipsilateral kidney (V20 reduction of 58%, p = 0.001), together with a very large reduction of mean dose for the contralateral lung (0.2 Gy vs 6.1 Gy, p = 0.0001). NTCP values for the liver showed a systematic superiority of IMPT with respect to IMRT for both the esophagus (average NTCP 14% vs. 30.5%) and the ipsilateral kidney (p = 0.001). Concerning plans obtained with different spot dimensions, a slight loss of target coverage was observed along with sigma increase, while maintaining OAR irradiation always under planning constraints.ConclusionResults suggest that IMPT allows better OAR sparing with respect to IMRT, mainly for the liver, ipsilateral kidney, and contralateral lung. The use of a spot dimension larger than 3 × 3 mm (up to 9 × 9 mm) does not compromise dosimetric results and allows a shorter delivery time.ZusammenfassungZielDie intensitätsmodulierte Strahlentherapie (IMRT) erhöht die therapeutische Dosis auf die Pleurahöhle und reduziert die Dosis auf die Risikoorgane (OAR) bei Patienten mit malignem Pleuramesotheliom (MPM). Ziel dieser Arbeit ist zu prüfen, ob Protonen, als intensitätsmodulierte Protonentherapie (IMPT) angewendet, die dosimetrischen Ergebnisse im Vergleich zu einer IMRT weiter verbessern können.Patienten und MethodenWir haben für 7 MPM-Fälle jeweils mit Photonen und Protonen, unter Verwendung von IMRT und IMPT, Bestrahlungspläne wiedererstellt. Für beide Verfahren haben wir eine Analyse der Normalgewebskomplikationen (NTCP) durchgeführt. In 3 Fällen wurden zusätzliche IMPT-Pläne mit geänderter Fokusgröße erstellt.ErgebnisseDie IMPT erlaubt eine leichte Verbesserung der Zielvolumenabdeckung und klare Vorteile in der Konformität (p < 0,001) sowie in der Homogenität (p = 0,01). Durch IMPT wurde eine bessere Schonung der OAR erreicht, im Einzelnen für die Leber mit einer Reduktion der Dmean auf 9,5 Gy, (p = 0,001), für die ipsilaterale Niere (58%-Reduktion von V20; p = 0,001) sowie eine starke Reduktion der mittleren Dosis der kontralateralen Lunge (0,2 Gy vs. 6,1 Gy; p = 0,0001). NTCP-Werte für die Leber zeigten eine systematische Überlegenheit der IMPT gegenüber der IMRT, Ähnliches für die Speiseröhre (Durchschnitts-NTCP 14% vs. 30,5%) und die ipsilaterale Niere (p = 0,001). Bezüglich der Pläne mit anderer Fokusgröße zeigt sich ein leichter Verlust der Zielvolumenabdeckung zusammen mit einer Sigma-Erhöhung. Die vorgegebenen Dosisbegrenzungen für die Risikoorgane wurden immer eingehalten.SchlussfolgerungenDie Ergebnisse zeigen, dass IMPT eine bessere Schonung der OAR ermöglicht, vor allem für Leber, ipsilaterale Niere und kontralaterale Lunge. Die Verwendung von Fokusgrößen größer als 3 × 3 mm (bis 9 × 9 mm) gefährdet nicht die dosimetrischen Ergebnisse und ermöglicht eine kürzere Bestrahlungszeit.
This paper references
10.1016/j.ijrobp.2009.06.091
Radiation dose-volume effects in the lung.
L. Marks (2010)
Helical tomotherapy . Experiences of the first 150 patients in Heidelberg
F Sterzing (2008)
10.1007/s00066-010-2179-1
Definition of the CTV Prostate in CT and MRI by Using CT–MRI Image Fusion in IMRT Planning for Prostate Cancer
B. Hentschel (2010)
10.2486/INDHEALTH.MS1147
Malignant mesothelioma: a clinical study of 238 cases.
Steven E. Haber (2011)
reotactic intensity - modulated radiation therapy ( IMRT ) and inverse treatment planning for advanced pleural mesothelioma . Feasibility and initial results
M Pinkawa (2011)
10.1016/J.IJROBP.2005.07.177
Excellent Local Control and Survival After Extrapleural Pneumonectomy and IMRT for Mesothelioma
C. Stevens (2005)
10.1016/S1470-2045(09)70134-2
A review of human carcinogens--Part C: metals, arsenic, dusts, and fibres.
K. Straif (2009)
10.1097/JTO.0b013e31816fca1b
Trimodality Treatment of Malignant Pleural Mesothelioma
H. Batırel (2008)
10.1016/S0167-8140(11)71544-4
1422 poster IBA PROTON PENCIL BEAM SCANNING : VALIDATION
F. Dessy (2011)
10.1097/JTO.0b013e3181a52e74
Thymic small cell carcinoma shows marked response to amrubicin.
S. Igawa (2009)
10.1016/j.athoracsur.2009.05.036
Trimodality therapy for malignant pleural mesothelioma.
G. Buduhan (2009)
In - tensity - modulated radiation therapy : a novel approach to the management of malignant pleural mesothelioma
WR Smythe (2003)
10.1007/s00066-003-1055-7
Stereotactic Intensity-Modulated Radiation Therapy (IMRT) and Inverse Treatment Planning for Advanced Pleural Mesothelioma
M. Muenter (2003)
10.1016/S0360-3016(02)04150-0
Intensity-modulated radiotherapy following extrapleural pneumonectomy for the treatment of malignant mesothelioma: clinical implementation.
K. Forster (2003)
10.1016/S0360-3016(02)04151-2
Intensity-modulated radiation therapy: a novel approach to the management of malignant pleural mesothelioma.
A. Ahamad (2003)
10.1016/S0003-4975(96)01228-3
Patterns of failure after trimodality therapy for malignant pleural mesothelioma.
E. Baldini (1997)
10.1120/jacmp.v11i4.3219
Assessing a set of optimal user interface parameters for intensity‐modulated proton therapy planning
M. Hillbrand (2010)
10.1016/J.IJROBP.2007.07.2370
Combined photon and electron three-dimensional conformal versus intensity-modulated radiotherapy with integrated boost for adjuvant treatment of malignant pleural mesothelioma after pleuropneumonectomy.
J. Krayenbuehl (2007)
10.1088/0031-9155/50/21/010
A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations.
M. Soukup (2005)
10.4081/MONALDI.2010.302
Treatment of malignant pleural mesothelioma: current status and future directions.
X. Dhalluin (2010)
10.1097/COC.0b013e3181d31f02
Expert Opinions of the First Italian Consensus Conference on the Management of Malignant Pleural Mesothelioma
C. Pinto (2011)
10.1016/J.IJROBP.2007.06.075
Restricted field IMRT dramatically enhances IMRT planning for mesothelioma.
A. Allen (2007)
10.1016/j.ijrobp.2009.09.053
Volumetric modulation arc radiotherapy compared with static gantry intensity-modulated radiotherapy for malignant pleural mesothelioma tumor: a feasibility study.
M. Scorsetti (2010)
10.1016/j.radonc.2011.09.025
Adjuvant radiotherapy after extrapleural pneumonectomy for mesothelioma. Prospective analysis of a multi-institutional series.
S. Tonoli (2011)
Combi - nation of dose escalation with technological advances ( intensity - modulated and image - guided radiotherapy ) is not associated with increased morbidity for patients with prostate cancer
C Pinto
10.1016/J.IJROBP.2007.03.011
Dose-dependent pulmonary toxicity after postoperative intensity-modulated radiotherapy for malignant pleural mesothelioma.
D. Rice (2007)
10.1016/S0360-3016(02)02846-8
Analysis of radiation-induced liver disease using the Lyman NTCP model.
L. Dawson (2002)
10.1016/J.IJROBP.2005.11.034
Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma.
Z. Xu (2006)
10.1007/s00066-010-2187-1
New Approach for Treatment of Vertebral Metastases Using Intensity-Modulated Radiotherapy*
Toshihiko Inoue (2010)
10.1136/oem.2009.047019
Non-occupational exposure to asbestos and malignant mesothelioma in the Italian National Registry of Mesotheliomas
D. Mirabelli (2010)
Radiation DoseVolume Effects in the Lung
L. Marks (2010)
10.1016/J.IJROBP.2006.03.012
Fatal pneumonitis associated with intensity-modulated radiation therapy for mesothelioma.
A. Allen (2006)
10.1088/0031-9155/52/3/006
A finite size pencil beam algorithm for IMRT dose optimization: density corrections.
U. Jelen (2007)
10.1016/J.ATHORACSUR.2007.04.076
Outcomes after extrapleural pneumonectomy and intensity-modulated radiation therapy for malignant pleural mesothelioma.
D. Rice (2007)
10.1016/J.IJROBP.2007.02.047
Influence of radiotherapy technique and dose on patterns of failure for mesothelioma patients after extrapleural pneumonectomy.
A. Allen (2007)
10.1016/j.ijrobp.2009.11.006
Proton therapy for malignant pleural mesothelioma after extrapleural pleuropneumonectomy.
J. Krayenbuehl (2010)
10.1007/s00066-011-2249-z
Combination of Dose Escalation with Technological Advances (Intensity-Modulated and Image-Guided Radiotherapy) Is Not Associated with Increased Morbidity for Patients with Prostate Cancer
M. Pinkawa (2011)
10.1007/s00066-011-2198-6
Reirradiation of Spinal Column Metastases
F. Stieler (2011)
10.1088/0031-9155/44/1/014
Intensity modulation methods for proton radiotherapy.
A. Lomax (1999)
10.1067/MTC.2001.116560
A phase II trial of surgical resection and adjuvant high-dose hemithoracic radiation for malignant pleural mesothelioma.
V. Rusch (2001)
10.1016/J.RADONC.2005.03.021
Acute esophageal toxicity in non-small cell lung cancer patients after high dose conformal radiotherapy.
J. Belderbos (2005)
10.1016/0360-3016(91)90171-Y
Tolerance of normal tissue to therapeutic irradiation.
B. Emami (1991)
10.1007/S11864-000-0047-4
Malignant pleural mesothelioma
H. Kindler (2000)
10.1016/j.radonc.2009.03.011
Pulmonary toxicity following IMRT after extrapleural pneumonectomy for malignant pleural mesothelioma.
C. Kristensen (2009)
10.1016/J.EJCTS.2006.11.046
A phase II study of intrapleural immuno-chemotherapy, pleurectomy/decortication, radiotherapy, systemic chemotherapy and long-term sub-cutaneous IL-2 in stage II-III malignant pleural mesothelioma.
M. Lucchi (2007)
10.1016/j.ijrobp.2007.11.011
Intensity-modulated radiotherapy for resected mesothelioma: the Duke experience.
E. Miles (2008)
10.1016/j.radonc.2007.12.010
Evaluating target coverage and normal tissue sparing in the adjuvant radiotherapy of malignant pleural mesothelioma: helical tomotherapy compared with step-and-shoot IMRT.
F. Sterzing (2008)
10.1007/978-3-642-59758-9_17
Hyperion — An integrated IMRT planning tool
M. Alber (2000)



This paper is referenced by
Proton Therapy in Practice: Clinical Indications-Thoracic Cancers
(2019)
10.1016/j.prro.2014.03.012
Long-term survival after treatment of glioblastoma multiforme with hyperfractionated concomitant boost proton beam therapy.
M. Mizumoto (2015)
10.1186/1748-717X-8-142
Clinical results of proton beam therapy for advanced neuroblastoma
Y. Oshiro (2013)
10.18388/ABP.2013_1986
Metastasis inhibition after proton beam, β- and γ-irradiation of melanoma growing in the hamster eye.
B. Romanowska-Dixon (2013)
10.1007/s00066-012-0235-8
Can treatment of pediatric Hodgkin’s lymphoma be improved by PET imaging and proton therapy?
B. Knaeusl (2012)
10.1016/j.canrad.2014.12.010
[Current situation and perspectives of proton therapy].
J. Doyen (2015)
10.2217/LMT.15.15
Optimizing hemithoracic pleural intensity-modulated radiation therapy for malignant pleural mesothelioma
F. Shaikh (2015)
10.1177/1533034616678110
Intensity-Modulated Radiation Therapy Improves the Target Coverage Over 3-D Planning While Meeting Lung Tolerance Doses for All Patients With Malignant Pleural Mesothelioma
S. Ulger (2017)
10.1016/j.rpor.2019.09.002
Cardiotoxicity of mediastinal radiotherapy.
I. Ratosa (2019)
10.1016/j.ctrv.2015.12.007
Proton beams in cancer treatments: Clinical outcomes and dosimetric comparisons with photon therapy.
J. Doyen (2016)
10.1016/J.CANRAD.2014.12.010
État des lieux et perspectives de la protonthérapie
J. Doyen (2015)
10.1007/978-3-030-16884-1_14
Role of Radiotherapy in Malignant Pleural Mesothelioma
M. Scorsetti (2019)
10.1111/php.13065
A Novel Prospective Study Assessing the Combination of Photodynamic Therapy and Proton Radiation Therapy: Safety and Outcomes When Treating Malignant Pleural Mesothelioma
S. Rice (2019)
10.1007/s00066-013-0390-6
Reirradiation for recurrent malignant brain tumor with radiotherapy or proton beam therapy
M. Mizumoto (2013)
10.1007/s00066-012-0274-1
Proton beam therapy for malignancy in Bloom syndrome
M. Mizumoto (2012)
10.1016/j.prro.2020.05.004
Consensus Statement on Proton Therapy in Mesothelioma.
J. Zeng (2020)
10.1111/1759-7714.12008
Role of new radiation techniques in the treatment of pleural mesothelioma
M. Amichetti (2013)
10.3978/j.issn.2225-319X.2012.10.07
Novel radiation therapy approaches in malignant pleural mesothelioma.
A. Rimner (2012)
10.1016/j.cllc.2018.04.019
Utilization of Intensity‐Modulated Radiation Therapy for Malignant Pleural Mesothelioma in the United States
S. Shaaban (2018)
10.21037/tlcr.2018.04.07
Proton beam therapy for malignant pleural mesothelioma.
S. Badiyan (2018)
10.7759/cureus.1705
Proton Therapy for Malignant Pleural Mesothelioma: A Three Case Series Describing the Clinical and Dosimetric Advantages of Proton-Based Therapy
H. Lee (2017)
10.1007/978-3-319-28761-4_20
Modern Radiotherapy Techniques in Malignant Pleural Mesothelioma
G. Ozyigit (2016)
Semantic Scholar Logo Some data provided by SemanticScholar