Online citations, reference lists, and bibliographies.
← Back to Search

PET-guided Dose Escalation Tomotherapy In Malignant Pleural Mesothelioma

Andrei Fodor, C. Fiorino, I. Dell'Oca, S. Broggi, M. Pasetti, G. Cattaneo, L. Gianolli, R. Calandrino, Nadia Gisella Muzio
Published 2011 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
PurposeTo test the feasibility of salvage radiotherapy using PET-guided helical tomotherapy in patients with progressive malignant pleural mesothelioma (MPM).Patients and MethodsA group of 12 consecutive MPM patients was treated with 56 Gy/25 fractions to the planning target volume (PTV); FDG-PET/CT simulation was always performed to include all positive lymph nodes and MPM infiltrations. Subsequently, a second group of 12 consecutive patients was treated with the same dose to the whole pleura adding a simultaneous integrated boost of 62.5 Gy to the FDG-PET/CT positive areas (BTV).ResultsGood dosimetric results were obtained in both groups. No grade 3 (RTOG/EORTC) acute or late toxicities were reported in the first group, while 3 cases of grade 3 late pneumonitis were registered in the second group: the duration of symptoms was 2–10 weeks. Median overall survival was 8 months (1.2–50.5 months) and 20 months (4.3–33.8 months) from the beginning of radiotherapy, for groups I and II, respectively (p = 0.19). A significant impact on local relapse from radiotherapy was seen (median time to local relapse: 8 vs 17 months; 1-year local relapse-free rate: 16% vs 81%, p = 0.003).ConclusionsThe results of this pilot study support the planning of a phase III study of combined sequential chemoradiotherapy with dose escalation to BTV in patients not able to undergo resection.ZusammenfassungZweckPrüfung der Machbarkeit von Salvage-Strahlentherapie mit der Hilfe PET-geführter helikaler Tomotherapie bei Patienten mit progredientem malignem Pleuramesotheliom (MPM).Patienten und MethodenDie erste Gruppe von 12 aufeinanderfolgenden MPM-Patienten wurde mit 56 Gy/25 Fraktionen im Planungszielvolumen behandelt. Eine FDG-PET/CT-Simulation wurde stets durchgeführt, um alle positiven Lymphknoten und MPM-Infiltrationen einzuschließen. Danach wurde eine zweite Gruppe von 12 aufeinanderfolgenden Patienten mit der gleichen Dosis auf der gesamten Pleura behandelt mit gleichzeitigem integriertem Boost von 62,5 Gy auf die FDG–PET/CT-positiven Bereiche (BTV).ErgebnisseGute dosimetrische Ergebnisse wurden in beiden Gruppen erzielt. In der ersten Gruppe wurde keine akute oder späte Grad-3-Toxizität (RTOG / EORTC) berichtet, während drei Fälle von später Grad-3-Pneumonitis in der zweiten Gruppe auftraten. Die Symptome hielten 2 bis 10 Wochen an. Das mediane Gesamtüberleben betrug 8 Monate (1,2–50,5 Monate) und 20 Monate (4,3–33,8 Monate) ab Therapiebeginn in Gruppe I und II (p = 0,19). Es wurde signifikanter Einfluss der Strahlentherapie auf Lokalrezidive beobachtet (mediane Zeit bis zum Lokalrezidiv: 8 vs 17 Monate; Rate 1-jähriger Lokalrezidivfreiheit: 16% vs 81%, p = 0,003).SchlussfolgerungenDie Ergebnisse dieser Pilotstudie sprechen für die Planung einer Phase-III-Studie der kombinierten sequentiellen Radiochemotherapie mit Dosiseskalation auf BTV bei inoperablen Patienten.
This paper references
10.1097/00005382-200605000-00006
Preoperative Evaluation of Patients With Malignant Pleural Mesothelioma: Role of Integrated CT-PET Imaging
M. Truong (2006)
10.1016/J.LUNGCAN.2005.03.007
The role of PET in the surgical management of malignant pleural mesothelioma.
R. Flores (2005)
Helical tomotherapy. Experiences of the first 150 patients
F Sterzing (2008)
10.1002/14651858.CD006165.pub3
Interventions for latent autoimmune diabetes (LADA) in adults.
S. Brophy (2011)
10.1016/j.ijrobp.2009.07.1084
Hemithoracic Helical Tomotherapy (HT) for Malignant Pleural Mesothelioma (MPM): Early Results of a Dose Escalation Experience
Andrei Fodor (2009)
10.1136/thorax.58.9.809
Lung cancer • 8: Management of malignant mesothelioma
C. Parker (2003)
10.1093/ANNONC/MDF663
Pleura mesothelioma: combined modality treatments.
T. Cerny (2002)
10.1016/j.radonc.2007.12.010
Evaluating target coverage and normal tissue sparing in the adjuvant radiotherapy of malignant pleural mesothelioma: helical tomotherapy compared with step-and-shoot IMRT.
F. Sterzing (2008)
10.1016/0003-4975(94)91066-9
Aggressive multimodality therapy for malignant pleural mesothelioma.
T. Rice (1994)
Helical intensity modulated radiation therapy (tomotherapy) in the primary treatment of pleural cancers
H Herm (2009)
5-year prospective results of trimodality treatment for malignant pleural mesothelioma.
V. Pagan (2006)
10.1378/CHEST.108.3.754
Prevention of malignant seeding after invasive diagnostic procedures in patients with pleural mesothelioma. A randomized trial of local radiotherapy.
C. Boutin (1995)
10.1016/S0022-5223(99)70469-1
Resection margins, extrapleural nodal status, and cell type determine postoperative long-term survival in trimodality therapy of malignant pleural mesothelioma: results in 183 patients.
D. Sugarbaker (1999)
Helical to - motherapy . Experiences of the first 150 patients in Heidelberg
F Sterzing (2008)
10.1016/J.IJROBP.2005.03.041
Hemithoracic radiation therapy after pleurectomy/decortication for malignant pleural mesothelioma.
V. Gupta (2005)
10.1200/JCO.2003.11.136
Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma.
N. Vogelzang (2003)
10.1016/S0360-3016(02)04151-2
Intensity-modulated radiation therapy: a novel approach to the management of malignant pleural mesothelioma.
A. Ahamad (2003)
10.1067/MTC.2000.106529
Positron emission tomography with f18-fluorodeoxyglucose in the staging and preoperative evaluation of malignant pleural mesothelioma.
D. Schneider (2000)
10.1007/s00066-008-1778-6
Helical Tomotherapy
F. Sterzing (2008)
10.1016/j.ejcts.2008.06.010
Open lung-sparing surgery for malignant pleural mesothelioma: the benefits of a radical approach within multimodality therapy.
A. Nakas (2008)
10.1016/J.RADONC.2006.06.002
The role of radiation therapy in malignant pleural mesothelioma: a systematic review.
Y. Ung (2006)
10.1016/j.ijrobp.2009.06.037
Radiotherapy in malignant pleural mesothelioma.
M. McAleer (2009)
10.1016/j.radonc.2008.06.006
Treatment planning comparison between conformal radiotherapy and helical tomotherapy in the case of locally advanced-stage NSCLC.
Giovanni Mauro Cattaneo (2008)
10.1007/s00066-010-2150-1
The Use of FDG-PET to Target Tumors by Radiotherapy
G. Lammering (2010)
Total Body Irradiation (TBI) in Pediatric Patients : A Single-center Experience after 30 Years of Low-dose Rate Irradiation (Original Article)
C. Linsenmeier (2010)
10.2967/jnumed.107.042333
Early Prediction of Response to Chemotherapy and Survival in Malignant Pleural Mesothelioma Using a Novel Semiautomated 3-Dimensional Volume-Based Analysis of Serial 18F-FDG PET Scans
R. Francis (2007)
10.1016/J.IJROBP.2007.03.011
Dose-dependent pulmonary toxicity after postoperative intensity-modulated radiotherapy for malignant pleural mesothelioma.
D. Rice (2007)
10.1007/s00066-003-1055-7
Stereotactic Intensity-Modulated Radiation Therapy (IMRT) and Inverse Treatment Planning for Advanced Pleural Mesothelioma
M. Muenter (2003)
10.1007/s00066-010-2089-2
Total Body Irradiation (TBI) in Pediatric Patients
C. Linsenmeier (2010)
10.1016/S0360-3016(03)00287-6
Hemithoracic radiation after extrapleural pneumonectomy for malignant pleural mesothelioma.
S. Yajnik (2003)
Non-Small Cell Lung Cancer in Stages I–IIIB : Long-Term Results of Definitive Radiotherapy with Doses ≥ 80 Gy in Standard Fractionation (Original Article)
K. Wurstbauer (2010)
10.1378/CHEST.114.3.713
Metabolic imaging of malignant pleural mesothelioma with fluorodeoxyglucose positron emission tomography.
F. Bénard (1998)
Assessment of malignant pleural mesothelioma with (18)F-FDG dual-head gamma-camera coincidence imaging: comparison with histopathology.
V. Gerbaudo (2002)
10.1016/0360-3016(95)00060-C
Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC)
J. Cox (1995)
10.1016/J.IJROBP.2006.03.012
Fatal pneumonitis associated with intensity-modulated radiation therapy for mesothelioma.
A. Allen (2006)
10.1016/j.radonc.2009.03.011
Pulmonary toxicity following IMRT after extrapleural pneumonectomy for malignant pleural mesothelioma.
C. Kristensen (2009)
Prognostic value of FDG PET imaging in malignant pleural mesothelioma.
F. Bénard (1999)
Pleurectomy/decortication in the setting of multimodality treatment for diffuse malignant pleural mesothelioma.
V. Rusch (1997)
10.1016/S0360-3016(01)02589-5
Lethal pulmonary complications significantly correlate with individually assessed mean lung dose in patients with hematologic malignancies treated with total body irradiation.
A. Della Volpe (2002)
10.3109/02841869609109921
Radiosensitivity of mesothelioma cell lines.
A. Häkkinen (1996)
10.1016/j.ijrobp.2008.08.038
Phase I-II study of hypofractionated simultaneous integrated boost with tomotherapy for prostate cancer.
N. Di Muzio (2009)
10.1097/00063198-200007000-00003
Management of malignant pleural mesothelioma: a critical review
Y. Lee (2000)
10.1007/s00066-010-2108-3
Non-Small Cell Lung Cancer in Stages I–IIIB
K. Wurstbauer (2010)
10.1016/J.IJROBP.2007.02.047
Influence of radiotherapy technique and dose on patterns of failure for mesothelioma patients after extrapleural pneumonectomy.
A. Allen (2007)
10.1080/02841860802266755
Physics aspects of prostate tomotherapy: Planning optimization and image-guidance issues
C. Fiorino (2008)
Radiotherapy for malignant pleural mesothelioma (Review)
E. Chapman (2010)



This paper is referenced by
10.1007/s00066-015-0920-5
Erratum to: Tomotherapy PET-guided dose escalation – A dosimetric feasibility study for patients with malignant pleural mesothelioma
A. Maggio (2015)
10.3978/j.issn.2225-319X.2012.10.07
Novel radiation therapy approaches in malignant pleural mesothelioma.
A. Rimner (2012)
10.1111/1754-9485.12636
High‐dose palliative radiotherapy for malignant pleural mesothelioma
F. Foroudi (2017)
10.1007/s00066-011-0066-z
Three-dimensional patient setup errors at different treatment sites measured by the Tomotherapy megavoltage CT
S. Hui (2011)
10.1016/j.lungcan.2015.08.012
Response evaluation in mesothelioma: Beyond RECIST.
Lin Cheng (2015)
10.1016/j.cllc.2018.08.019
Moderately Hypofractionated Helical IMRT, FDG–PET/CT‐guided, for Progressive Malignant Pleural Mesothelioma in Patients With Intact Lungs
A. Fodor (2019)
10.3906/SAG-1312-149
Is there any impact of PET/CT on radiotherapy planning in rectal cancer patients undergoing preoperative IMRT?
D. Kılıç (2015)
10.1016/j.jtho.2019.03.030
The Use of Radiation Therapy for the Treatment of Malignant Pleural Mesothelioma: Expert Opinion from the National Cancer Institute Thoracic Malignancy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation.
D. Gomez (2019)
10.1007/s00066-012-0119-y
Rechtliche Grundlagen für den Umgang mit sicherheitsrelevanten Ereignissen in der Strahlentherapie
F. Lőhr (2012)
10.1177/1533034616678110
Intensity-Modulated Radiation Therapy Improves the Target Coverage Over 3-D Planning While Meeting Lung Tolerance Doses for All Patients With Malignant Pleural Mesothelioma
S. Ulger (2017)
10.1007/s00066-012-0182-4
Multicenter evaluation of different target volume delineation concepts in pediatric Hodgkin’s lymphoma
C. Lütgendorf-Caucig (2012)
10.1007/s00066-013-0454-7
Potential of [18F]-Fluoromisonidazole positron-emission tomography for radiotherapy planning in head and neck squamous cell carcinomas
B. Figueiredo (2013)
10.2174/1876533501306010010
Progress in Radical Surgery for Malignant Pleural Mesothelioma
L. Politi (2013)
10.1111/1759-7714.12008
Role of new radiation techniques in the treatment of pleural mesothelioma
M. Amichetti (2013)
10.1007/s00066-017-1108-y
Does selective pleural irradiation of malignant pleural mesothelioma allow radiation dose escalation?
A. Botticella (2017)
10.1080/0284186X.2016.1234066
Optimal gross tumor volume definition in lung-sparing intensity modulated radiotherapy for pleural mesothelioma: an in silico study
A. Botticella (2016)
10.1016/j.radonc.2017.08.003
The role of radical radiotherapy in the management of malignant pleural mesothelioma: A systematic review.
M. Ashton (2017)
10.1007/978-3-319-52619-5_36-1
Radiation Therapy in Mesothelioma
J. Willmann (2019)
10.1186/1748-717X-8-180
Automated biological target volume delineation for radiotherapy treatment planning using FDG-PET/CT
M. Niyazi (2013)
10.1007/s00066-019-01458-1
Tomotherapy in malignant mesothelioma: a planning study to establish dose constraints
C. Leitzen (2019)
10.1016/j.biopha.2013.01.008
¹⁸F-FDG-PET/CT in malignant mesothelioma.
C. Fuccio (2013)
10.1007/s10719-012-9385-2
Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content
M. Aureli (2012)
10.1007/s00259-018-4056-6
FDG PET-derived parameters as prognostic tool in progressive malignant pleural mesothelioma treated patients
E. Incerti (2018)
10.1080/0284186X.2017.1279749
Long-term outcomes of intensity-modulated radiotherapy following extra-pleural pneumonectomy for malignant pleural mesothelioma
Y. Matsuo (2017)
10.1007/s00066-015-0901-8
Tomotherapy PET-guided dose escalation
A. Maggio (2015)
10.1016/J.ADRO.2020.09.002
Malignant Pericardial Mesothelioma treated using Volumetric Modulated Arc Therapy with a Simultaneous Integrated Boost
Cole Steber (2020)
10.2217/LMT.15.15
Optimizing hemithoracic pleural intensity-modulated radiation therapy for malignant pleural mesothelioma
F. Shaikh (2015)
Semantic Scholar Logo Some data provided by SemanticScholar