Online citations, reference lists, and bibliographies.

Ultraviolet Finite Quantum Field Theory On Quantum Spacetime

D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli
Published 2003 · Physics, Mathematics

Cite This
Download PDF
Analyze on Scholarcy
Share
Abstract: We discuss a formulation of quantum field theory on quantum space time where the perturbation expansion of the S-matrix is term by term ultraviolet finite. The characteristic feature of our approach is a quantum version of the Wick product at coinciding points: the differences of coordinates qj−qk are not set equal to zero, which would violate the commutation relation between their components. We show that the optimal degree of approximate coincidence can be defined by the evaluation of a conditional expectation which replaces each function of qj−qk by its expectation value in optimally localized states, while leaving the mean coordinates invariant. The resulting procedure is to a large extent unique, and is invariant under translations and rotations, but violates Lorentz invariance. Indeed, optimal localization refers to a specific Lorentz frame, where the electric and magnetic parts of the commutator of the coordinates have to coincide [11]. Employing an adiabatic switching, we show that the S-matrix is term by term finite. The matrix elements of the transfer matrix are determined, at each order in the perturbative expansion, by kernels with Gaussian decay in the Planck scale. The adiabatic limit and the large scale limit of this theory will be studied elsewhere.
This paper references
10.1103/PhysRev.75.1736
The S matrix in quantum electrodynamics
F. Dyson (1949)
Noncommutative geometry and matrix theory : compactification on thori
M. R. Douglas A. Connes (1998)
Noncommutative geometry and matrix theory: compactification on thori
A Connes (1998)
10.1016/0370-2693(94)90940-7
Spacetime quantization induced by classical gravity
S. Doplicher (1994)
Introduction to the Theory of Quantized Fields: Third Edition. By N. N. Bogoliubov and D. V. Shirkov
W. Zachary (1981)
Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann
J Neumann (1931)
10.1140/epjc/s2003-01210-9
Space/time non-commutative field theories and causality
H. Bozkaya (2003)
10.1016/S0550-3213(99)00664-1
Quantum field theory on non-commutative space-times and the persistence of ultraviolet divergences
M. Chaichian (1998)
10.1007/BF01457956
Die Eindeutigkeit der Schrödingerschen Operatoren
J. V. Neumann (1931)
Les C*-algèbres et leurs représentations ..
J. Dixmier (1964)
10.1088/1126-6708/1998/02/003
Noncommutative Geometry and Matrix Theory: Compactification on Tori
A. Connes (1997)
10.1007/BF02104515
The quantum structure of spacetime at the Planck scale and quantum fields
S. Doplicher (1995)
Method of Modern Mathematical Physics
Mark Reed (1972)
10.1016/0370-2693(96)00024-X
Divergencies in a field theory on quantum space
T. Filk (1996)
and A
A. Connes (1998)
10.1007/3-540-46082-9_14
Quantum Fields and Noncommutative Spacetime
K. Fredenhagen (2002)
10.1142/S0218271800000153
FINITE FIELD THEORY ON NONCOMMUTATIVE GEOMETRIES
S. Cho (2000)
Methods of Modern Mathematical Physics: Fourier Analysis
M. Reed (1975)
10.1016/S0550-3213(00)00525-3
Space-time noncommutative field theories and unitarity
J. Gomis (2000)
10.1007/3-540-46082-9
Noncommutative geometry and the standard model of elementary particle physics
F. Scheck (2002)
Noncommutative geometry and matrix theory : compactification on thori
K. Fredenhagen S. Doplicher
10.1063/1.3057034
Introduction to the theory of quantized fields
N. Bogolyubov (1960)
10.1088/1126-6708/1999/06/030
D-branes and deformation quantization
V. Schomerus (1999)
10.1016/S0370-2693(02)01563-0
On the unitarity problem in space/time noncommutative theories
D. Bahns (2002)
10.1103/PhysRev.72.874
On Quantized Space-Time
C. Yang (1947)
Field Theory on Noncommutative Space-Time and the Deformed Virasoro Algebra
M. Chaichian (2000)



This paper is referenced by
10.1007/s10701-010-9497-0
Unsharp Quantum Reality
Paul Busch (2010)
10.1063/1.3276100
The principle of locality: Effectiveness, fate, and challenges
Sergio Doplicher (2009)
10.1016/J.GEOMPHYS.2018.08.001
Integrability and positivity in quantum field theory on noncommutative geometry
Harald Grosse (2018)
10.1016/S0550-3213(03)00582-0
General Properties of Noncommutative Field Theories
L. Álvarez‐Gaumé (2003)
10.1016/j.exmath.2020.01.002
Quantum Spacetime, Quantum Geometry and Planck scales
S. Doplicher (2020)
Comment on \Can we measure structures to a precision better than the Planck length?", by
Sabine Hossenfelder (2012)
10.1103/PhysRevD.82.105033
Noncommutative (supersymmetric) electrodynamics in the Yang-Feldman formalism
Jochen Zahn (2010)
ThePrincipleofLocality.Eectiveness,fateand challenges
Sergio Doplicher (2013)
10.1088/1126-6708/2006/04/016
Gauge-invariant resummation formalism and unitarity in non-commutative QED
N. Caporaso (2006)
10.1007/s00023-009-0401-4
Dispersion Relations in the Noncommutative $$\phi^3$$ and Wess–Zumino Model in the Yang–Feldman Formalism
C. Döscher (2009)
10.3842/SIGMA.2010.061
Field Theory on Curved Noncommutative Spacetimes
Alexander Schenkel (2010)
10.1103/PhysRevD.73.125001
Noncommutative Field Theory from twisted Fock space
Jong-Geon Bu (2006)
10.1088/0305-4470/37/28/008
Lorentz invariance, unitarity and UV-finiteness of QFT on noncommutative spacetime
A. Smailagic (2004)
Realismo pitagórico y realismo cantoriano en la física cuántica no relativista
Rafael Andrés Alemañ Berenguer (2012)
10.1140/epjc/s2003-01396-8
No UV/IR mixing in unitary space-time non-commutative field theory
P. Fischer (2004)
10.1140/epjc/s10052-012-2262-0
On the renormalization of non-commutative field theories
Daniel N. Blaschke (2013)
10.1063/1.1419326
Spacetime and fields, a quantum texture
S. Doplicher (2002)
10.1143/PTP.110.1003
Discrete Symmetries in Lorentz-Invariant Non-Commutative QED
K. Morita (2003)
10.1142/S0217751X09043353
Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review
P. Nicolini (2009)
Deformation Quantization: Observable Algebras, States and Representation Theory
S. Waldmann (2003)
10.1142/S0129055X12500109
Minimal length in quantum space and integrations of the line element in Noncommutative Geometry
Pierre Martinetti (2012)
10.1016/j.physletb.2014.02.053
High energy bosons do not propagate
M. Kurkov (2014)
Loop Quantum Gravity Phenomenology: Linking Loops to Physics
F. Girelli (2012)
10.1088/1751-8113/43/15/155401
On second quantization on noncommutative spaces with twisted symmetries
G. Fiore (2010)
10.1007/s00220-011-1358-y
Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators
Dorothea Bahns (2011)
10.1103/PhysRevD.71.025022
Field theory on noncommutative spacetimes: Quasiplanar Wick products
D. Bahns (2005)
10.1007/s00023-011-0089-0
Divergences in Quantum Field Theory on the Noncommutative Two-Dimensional Minkowski Space with Grosse–Wulkenhaar Potential
J. Zahn (2011)
PERTURBATIVE ASPECTS OF NON-LOCAL AND NON-COMMUTATIVE QUANTUM FIELD THEORIES
S. Denk (2005)
10.1007/s00220-004-1057-z
Moyal Planes are Spectral Triples
V. Gayral (2004)
10.1016/J.AOP.2017.09.010
Revisiting quantum mechanics on non-commutative space–time
Partha Nandi (2017)
10.1007/978-3-319-46003-1
Lectures on Matrix Field Theory
B. Ydri (2016)
∗-Algebraic Model for Locally Noncommutative Spacetimes
Jakob G. Heller (2006)
See more
Semantic Scholar Logo Some data provided by SemanticScholar