Online citations, reference lists, and bibliographies.
← Back to Search

Inhibitory Effects Of The Total And Water-soluble Concentrations Of Nine Different Metals On The Dehydrogenase Activity Of A Loess Soil

G. Welp
Published 1999 · Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
Abstract This study focuses on a comparison of the microbial toxicity of nine metals, including As as a metalloid and two species of Cr. A loess soil [Ap horizon, clay 15.2%, organic C 1.12%, pH(CaCl2) 7.02] was spiked with 8–12 geometrically increasing doses of the metals. The dehydrogenase assay (2-p-iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride method) was combined with sorption and solubility experiments. The resulting dose-response curves and sorption isotherms were used to derive total doses that caused definite percentage inhibitions [i.e. effective doses (ED) causing a 10–90% reduction in dehydrogenase activity (dha)] as well as the corresponding toxic solution concentrations causing the same reductions in dha (i.e. effective concentrations; EC10–EC90). Based on total doses, the toxicity decreased in the following order with ED50 values (mg kg–1) given in brackets: Hg (2.0)>Cu (35)>Cr(VI) (71)>Cr(III) (75)>Cd (90)>Ni (100)>Zn (115)>As (168)>Co (582)>Pb (652). With regard to solution concentrations, toxicity decreased in the order (EC50 in mg l–1): Hg (0.003)>Pb (0.04)>Cu (0.05)>Cd (0.14)>Zn (0.19)>Cr(III) (0.62)>Ni (0.69)>Co (30.6)>As (55.5)>Cr(VI) (78.1). The retention of the metals by the soil differed strongly. Pb, Cu, and Hg exhibited the highest and Ni, As, and Cr(VI) the lowest sorption constants (Freundlich K values: 2455, 724, 348, 93, 13, and 0.06 mg kg–1, respectively). The sorptivity of the metals and their microbial toxicity in the aqueous phase were characteristically related: metals with a strong toxic action in the soil solution were adsorbed by the soil to a high degree and vice versa. Therefore, especially for metals with a high inherent toxicity, sorption is an effective way of immobilizing them and temporarily detoxifying soil.
This paper references
10.1016/S0038-0717(96)00293-3
The quest for a contemporary ecological dimension to soil biology
D. Wardle (1996)
Auswirkungen von Schadstoffbelastungen (Pestiziden, Schwermetallen) auf Bodenleben und Bodenfruchtbarkeit
JCG Ottow (1984)
10.1007/BF00279331
Effects of heavy metals in soil on microbial processes and populations (a review)
E. Bååth (1989)
10.1097/00010694-198911000-00008
CORRELATION OF FREUNDLICH Kd AND n RETENTION PARAMETERS WITH SOILS AND ELEMENTS
B. Buchter (1989)
Untersuchungsmethoden zur Erfassung der Wirkung von Schwermetallen auf die mikrobielle Aktivität von Böden
BM Wilke (1988)
10.1016/0038-0717(84)90090-7
Dehydrogenase activity in soil: A comparison between the INT and TTC assay
J. Trevors (1984)
10.1006/EESA.1997.1577
Microbial toxicity of Cd and Hg in different soils related to total and water-soluble contents.
G. Welp (1997)
Die Dehydrogenaseaktivitt des Bodens als Ma fr die Mikroorganismenttigkeit im Boden
G. Lenhard (1956)
10.1007/BF01609817
Effect of metals and other inorganic ions on soil microbial activity: Soil dehydrogenase assay as a simple toxicity test
J. Rogers (1985)
10.1002/JPLN.19911540302
Dosis‐ Wirkungs‐Beziehungen zur Erfassung von Chemikalienwirkungen auf die mikrobielle Aktivität von Böden: I. Kurvenverläufe und Auswertungsmöglichkeiten
G. Welp (1991)
10.1007/978-3-642-70441-3_11
Heavy metal species, mobility and availability in soils
G. Brümmer (1986)
Mobilität anorganischer Schadstoffe in Böden Nordrhein-Westfalens
F Liebe (1997)
Bestimmung der Dehydrogenaseaktivität (TTC-Reduktion) im Boden. II. Einfluß der Siebfraktionen auf die Aktivität sowie auf die Wirkung eines Herbizids
HP Malkomes (1995)
10.1002/JPLN.19911540605
Einfluß verschiedener Bodeneigenschaften auf die mikrobielle Toxizität von Blei und Cadmium
B. Wilke (1991)
10.2307/2960521
Methods in Soil Biology.
C. Robinson (1997)
Adsorptions- und Löslichkeitseigenschaften von zehn Metallen in Böden variierenden Stoffbestandes
G Welp (1991)
10.3109/10408418009081123
Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms.
H. Babich (1980)
Heavy metals in soil biology and biochemistry
G Tyler (1981)
10.1016/0043-1354(83)90265-8
Comparison of several microbiological toxicity screening tests
B. J. Dutka (1983)
10.1016/0038-0717(77)90054-2
Effects of trace elements on urease activity in soils
M. Tabatabai (1977)
Erfahrungen mit dem Bakterientoximeter bei der Untersuchung giftstoffhaltiger Lösungen und schadstoffbelasteter Wasserproben
U. Pilz (1986)
Löslichkeit und Bioverfügbarkeit von Umweltchemikalien in Böden unterschiedlichen Stoffbestandes
G Welp (1989)
10.1002/JPLN.19811440504
Die Adsorption von HCB und DDD in Böden
U. Müller-Wegener (1981)
10.1006/EESA.1997.1520
Toxicity of increased amounts of chemicals and the dose-response curves for heterogeneous microbial populations in soil.
G. Welp (1997)
10.1016/0038-0717(77)90063-3
The estimation of dehydrogenase activity in soil
C. B. Benefield (1977)
10.2136/SSSAJ1956.03615995002000040040X
Principles of fungicidal action
G. J. Horsfall (1956)



This paper is referenced by
10.2134/JEQ2003.1346
Response of soil microbiological activities to cadmium, lead, and zinc salt amendments.
T. Stuczynski (2003)
10.1897/07-288.1
Metals affect soil bacterial and fungal functional diversity differently.
A. M. Stefanowicz (2008)
10.1007/s003740100354
Effects of the herbicides metazachlor and dinoterb on the soil microflora and the degradation and sorption of metazachlor under different environmental conditions
S. Beulke (2001)
10.1016/J.EJSOBI.2009.02.004
Soil organic carbon buffers heavy metal contamination on semiarid soils: effects of different metal threshold levels on soil microbial activity.
J. Moreno (2009)
10.1016/J.GEODERMA.2016.06.015
Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil
P. Abad-Valle (2016)
10.7745/KJSSF.2011.44.5.727
Understanding of a Korean Standard for the Analysis of Hexavalent Chromium in Soils and Interpretation of their Results
Rog-Young Kim (2011)
10.1016/S0147-6513(02)00075-1
Microbial activity and phospholipid fatty acid pattern in long-term tannery waste-contaminated soil.
S. P. B. Kamaludeen (2003)
10.1007/S12665-009-0200-8
Assessment of effects of heavy metals combined pollution on soil enzyme activities and microbial community structure: modified ecological dose–response model and PCR-RAPD
Yang Gao (2010)
10.1080/09064710.2014.953985
Influence of soil factors on the soil enzyme inhibition by Cd
X. Tan (2014)
Influence of Contamination of Soil with Copper on the Activity of Dehydrogenases in Areas where Amaranthus is Cultivated
Barbara Skwaryło-Bednarz (2012)
10.1007/s00374-007-0181-2
Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers
Staffan Åkerblom (2007)
10.1002/JPLN.201100367
Suitability of inorganic and organic amendments for in situ immobilization of Cd, Cu, and Zn in a strongly contaminated Kastanozem of the Mashavera valley, SE Georgia. I. Effect of amendments on metal mobility and microbial activity in soil
T. Hanauer (2012)
Effect of Cadmium and Magnesium on Enzymatic Activity in Soil
J. Wyszkowska (2003)
10.1155/2014/196140
Phylogenetic Diversity of Archaea and the Archaeal Ammonia Monooxygenase Gene in Uranium Mining-Impacted Locations in Bulgaria
G. Radeva (2014)
10.1080/13102818.2010.10817843
Natural Communities of Uranium Mining Impacted Area in the Vicinity of the Senokos Village
Valentin Bogoev (2010)
10.1007/s00128-018-2402-9
Soil Enzymatic Activities as Influenced by Lead and Nickel Concentrations in a Vertisol of Central India
M. Dotaniya (2018)
10.7857/JSGE.2013.18.3.073
Effects of Soil Remediation Methods on the Biological Properties of Soils
Yong-Min Yi (2013)
10.1007/s00128-020-02844-7
Effect of Shoot Cutting on Trace Metal Concentration in Leaves and Capitula of Potential Phytoaccumulator, Invasive Erigeron annuus (Asteraceae)
A. Pliszko (2020)
10.1007/978-3-319-21329-3_7
Progeny of Radon (210Pb) as a Tracer and Chronometer in Continents and Aqueous Systems
M. Baskaran (2016)
Resilience Limitations and Resistance of Hyporheic Microbial Communities from Chronic Heavy Metal Contamination Environments: Analysis with the Novel Resazurin Resorufin Smart Tracer
Daniel Joseph Stanaway (2012)
10.15666/aeer/1705_1141911449
EFFECT OF COBALT ON THE ENVIRONMENT AND LIVING ORGANISMS - A REVIEW
M. Kosiorek (2019)
10.1007/s11356-017-9127-x
Toxicity of nickel to soil microbial community with and without the presence of its mineral collectors—a calorimetric approach
P. Bararunyeretse (2017)
Update of ecological risk limits for arsenic in soil
R. vanHerwijnen (2015)
Update of ecological risk limits of nickel in soil
Admar Verschoor (2015)
10.1016/J.EJSOBI.2009.05.005
Pollution-induced tolerance of soil bacterial communities in meadow and forest ecosystems polluted with heavy metals
A. M. Stefanowicz (2009)
10.5772/INTECHOPEN.81348
The Influence of Potentially Toxic Elements on Soil Biological and Chemical Properties
O. P. Bansal (2018)
10.1065/JSS2005.05.141
Effect of Clay Minerals on Immobilization of Heavy Metals and Microbial Activity in a Sewage Sludge-Contaminated Soil (8 pp)
Adel R. A. Usman (2005)
10.1007/s10661-016-5399-8
Biological activity of soil contaminated with cobalt, tin, and molybdenum
M. Zaborowska (2016)
10.4236/OJSS.2011.11002
Soil Biological and Biochemical Responses to Cd Exposure
R. E. Masto (2011)
10.1080/02757540410001665971
Effect of clay minerals on extractability of heavy metals and sewage sludge mineralization in soil
Adel R. A. Usman (2004)
10.9734/CSJI/2020/V29I230162
Effect of Drilling Wastes on Urease Activities and Substrate Induced Respiration (SIR) in Wetland Soil of Delta and Bayelsa States, South-South, Nigeria
E. Mirinn (2020)
10.1016/j.marpolbul.2016.05.044
Copper and lead removal from aqueous solutions by bacterial consortia acting as biosorbents.
Carolina Coelho da Costa Waite (2016)
See more
Semantic Scholar Logo Some data provided by SemanticScholar