Online citations, reference lists, and bibliographies.
← Back to Search

CIRE1, A Novel Transcriptionally Active Ty1-copia Retrotransposon From Citrus Sinensis

Laura Rico-Cabanas, J. Martínez-Izquierdo
Published 2006 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
LTR retrotransposons (LTR-RTNs) are widespread constituents of eukaryote genomes, particularly plant genomes. Although LTR-RTNs from plants were thought to be transcriptionally silent in somatic tissues, evidences of activity under certain conditions are available for some of them. In order to investigate LTR-RTNs in the Citrus sinensis genome, we analysed them by PCR using degenerate primers corresponding to highly conserved domains. All elements of the two types of LTR-RTN comprise about 23% of the genome, the copia group contribution being higher (13%) than the gypsy one (10%). From dendogram analysis, we report seven new copia RTN families, named CIRE1 to CIRE7. Here, we report on the first complete retrotransposon identified in Citrus (named CIRE1), which has all the features of a typical copia RTN. CIRE1 retrotransposon has around 2,200 full-length copies, contributing to 2.9% of the C. sinensis genome. CIRE1 has a root-specific expression in sweet orange plants. We have also determined that wounding and exogenous application of plant hormones, as methyl jasmonate and auxin, increase the transcription level of CIRE1 in leaf tissues. In addition, we show that CIRE1 5′LTR promoter can drive transient expression of the gus reporter gene in heterologous plant systems. These findings confirm CIRE1 as one of the few transcriptionally active RTNs described in plants and to our knowledge the first one to be reported in Citrus species.
This paper references
10.1016/0003-2697(76)90527-3
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
M. M. Bradford (1976)
10.1128/MCB.5.7.1630
Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins.
S. Mount (1985)
10.1128/MCB.6.4.1129
The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins.
R. Marlor (1986)
10.1002/j.1460-2075.1987.tb02730.x
GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants.
R. Jefferson (1987)
10.1093/OXFORDJOURNALS.MOLBEV.A040454
The neighbor-joining method: a new method for reconstructing phylogenetic trees.
N. Saitou (1987)
10.1038/337376A0
Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics
M. Grandbastien (1989)
10.1073/PNAS.86.13.5015
Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila.
D. Smyth (1989)
10.1016/S0022-2836(05)80360-2
Basic local alignment search tool.
S. Altschul (1990)
A superfamily of Arabidopsis thaliana retrotransposons.
A. Konieczny (1991)
10.1002/j.1460-2075.1991.tb07717.x
Specific expression of the tobacco Tnt1 retrotransposon in protoplasts.
S. Pouteau (1991)
10.1073/PNAS.89.15.7124
copia-like retrotransposons are ubiquitous among plants.
D. Voytas (1992)
10.1105/tpc.4.2.129
Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors.
E. Farmer (1992)
10.1002/j.1460-2075.1993.tb05907.x
Activation of tobacco retrotransposons during tissue culture.
H. Hirochika (1993)
Nuclear genome size variations in Citrus
P. Ollitrault (1994)
10.1093/NAR/22.22.4673
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.
J. Thompson (1994)
10.1046/J.1365-313X.1994.05040535.X
Microbial elicitors of plant defence responses activate transcription of a retrotransposon
S. Pouteau (1994)
Caracterizacion molecular de grandel, un nuevo tipo de retrotransposon del genero zea
Carlos M. Vicient Sánchez (1995)
10.1016/0959-437X(95)80016-X
LTR-retrotransposons and MITEs: important players in the evolution of plant genomes.
S. Wessler (1995)
10.1073/PNAS.93.15.7783
Retrotransposons of rice involved in mutations induced by tissue culture.
H. Hirochika (1996)
10.1007/S004380050215
MAGGY, a retrotransposon in the genome of the rice blast fungus
M. Farman (1996)
10.1126/science.274.5288.765
Nested Retrotransposons in the Intergenic Regions of the Maize Genome
P. SanMiguel (1996)
10.1007/s004380050080
The Ty1-copia group retrotransposons in Vicia species: Copy number, sequence heterogeneity and chromosomal localisation
Pearce (1996)
10.1105/tpc.8.4.725
Autonomous transposition of the tobacco retrotransposon Tto1 in rice.
H. Hirochika (1996)
10.1007/s004380050372
Genetic distribution of Bare–1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP)
R. Waugh (1997)
10.1007/978-94-011-4898-6_10
Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution
J. M. Casacuberta (1997)
Extreme structural heterogeneity among the members of a maize retrotransposon family.
S. Marillonnet (1998)
10.1046/J.1365-313X.1998.00071.X
Gypsy-like retrotransposons are widespread in the plant kingdom.
A. Suoniemi (1998)
10.1016/S0378-1119(98)00486-7
Highly heterogeneous families of Ty1/copia retrotransposons in the Lycopersicon chilense genome.
M. Yánez (1998)
10.1016/S1360-1385(98)01232-1
Activation of plant retrotransposons under stress conditions
Marie-Angèle Grandbastien (1998)
10.1007/PL00008635
Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes
B. M. Gribbon (1999)
10.1007/s001220051263
Citrus and Prunuscopia-like retrotransposons
M. Aśins (1999)
10.1046/J.1365-313X.1999.00460.X
A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors.
S. Takeda (1999)
10.1146/annurev.genet.33.1.479
Plant retrotransposons.
A. Kumar (1999)
10.1007/s004380051132
Heterogeneity of the internal structure of PDR1, a family of Ty1/copia-like retrotransposons in pea
A. Vershinin (1999)
10.1105/tpc.11.9.1769
Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum
C. Vicient (1999)
10.1093/bioinformatics/15.2.174
DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis
J. Rozas (1999)
10.1038/35048692
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
The Arabidopsis Genome Initiative (2000)
10.2144/00281BM10
Improved analysis of promoter activity in biolistically transformed plant cells.
M. Menossi (2000)
10.1046/J.1365-313X.2000.00779.X
Efficient insertion mutagenesis of Arabidopsis by tissue culture-induced activation of the tobacco retrotransposon Tto1.
H. Okamoto (2000)
10.1007/s004380100514
Retrolyc1 subfamilies defined by different U3 LTR regulatory regions in the Lycopersicon genus
P. Araujo (2001)
10.1046/J.1365-313X.2001.01141.X
The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors.
D. Melayah (2001)
10.1093/PCP/PCE171
OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses.
Y. Kimura (2001)
10.1093/BIOINFORMATICS/17.12.1244
MEGA2: molecular evolutionary genetics analysis software
S. Kumar (2001)
10.1104/PP.125.3.1283
Active retrotransposons are a common feature of grass genomes.
C. Vicient (2001)
10.1006/MPEV.2001.1008
The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species.
M. P. Bretó (2001)
10.1104/PP.127.1.212
Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants.
T. Béguiristain (2001)
MEGA2.1: molecular evolutionary genetics analysis software, Bioinformatics 17:1244–1245
S Kumar (2001)
10.1166/GL.2002.002
Copia-Like Retrotransposons in the Rice Genome: Few and Assorted
C. Vicient (2002)
10.1105/tpc.004960
Auxin-Mediated Cell Cycle Activation during Early Lateral Root Initiation Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.004960.
Kristiina Himanen (2002)
10.1038/nature01184
The genome sequence and structure of rice chromosome 1
T. Sasaki (2002)
Genome sequence and structure of rice chromosome
T Sasaki (2002)
10.1007/s00122-003-1382-1
Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus
G. P. Bernet (2003)
10.1093/MOLBEV/MSG095
Study on the evolution of the grande retrotransposon in the zea genus.
J. García-Martínez (2003)
Characterization of high-copy-number retrotransposons from the large genomes of the louisiana iris species and their use as molecular markers.
E. K. Kentner (2003)
10.1007/BF00020976
Athila, a new retroelement from Arabidopsis thaliana
T. Pélissier (2004)
10.1007/BF00021796
A reverse transcriptase activity in potato mitochondria
A. Moenne (2004)
10.1007/BF00021791
The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays
A. Suoniemi (2004)
10.1007/BF00222927
Chromosome localization and characterization of a family of long interspersed repetitive DNA elements from the genus Zea
R. Aledo (2004)
10.1007/BF00279796
Extreme heterogeneity of Ty1-copia group retrotransposons in plants
A. Flavell (2004)
10.1023/A:1005911413528
Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate
S. Takeda (2004)
10.1007/BF00027369
BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.)
I. Manninen (2004)
10.1023/A:1004028002883
Retrolyc1-1, a member of the Tntl retrotransposon super-family in the Lycopersicon peruvianum genome
A. P. Costa (2004)
10.1007/BF02153053
PREM-2, a copia-type retroelement in maize is expressed preferentially in early microspores
M. P. Turcich (2005)
10.1159/000084957
Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae
M-A Grandbastien (2005)
10.1104/pp.105.059766
Involvement of Ethylene in Stress-Induced Expression of the TLC1.1 Retrotransposon from Lycopersicon chilense Dun.1[w]
G. Tapia (2005)
10.1007/BF02603120
Progressive sequence alignment as a prerequisitetto correct phylogenetic trees
D. Feng (2007)
10.1007/BF02672016
Nuclear DNA content of some important plant species
K. Arumuganathan (2007)
Citrus and Prunus copia-like retrotransposons
M. Asins



This paper is referenced by
10.1186/s12870-021-02991-x
LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome
A. Vangelisti (2021)
10.1007/s10709-020-00085-4
A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.)
F. Mascagni (2020)
10.1515/opag-2020-0026
Phylogenetic relationships among accessions in Citrus and related genera based on the insertion polymorphism of the CIRE1 retrotransposon
A. Horibata (2020)
10.1016/j.ygeno.2019.09.010
Interspecific hybridisation and LTR-retrotransposon mobilisation-related structural variation in plants: A case study.
G. Usai (2019)
10.1016/j.plaphy.2018.11.014
Transcriptional activation of long terminal repeat retrotransposon sequences in the genome of pitaya under abiotic stress.
Qiong Nie (2019)
10.1093/gbe/evz246
Reprogramming of Retrotransposon Activity during Speciation of the Genus Citrus
Carles Borredá (2019)
10.1007/s13562-018-0457-7
Estimation of nuclear genome size and characterization of Ty1-copia like LTR retrotransposon in Mesua ferrea L.
R. Das (2018)
10.1007/s11295-018-1257-x
LTR retrotransposons from the Citrus x clementina genome: characterization and application
Dongliang Du (2018)
10.5897/AJAR2017.12354
Application of sequence specific amplified polymorphism (SSAP) and simple sequence repeat (SSR) markers for variability and molecular assisted selection (MAS) studies of the Mexican guava
G. Campos‐Rivero (2017)
10.1016/J.SCIENTA.2017.03.049
Mdoryco1-1, a bidirectionally transcriptional Ty1-copia retrotransposon from Malus × domestica
L. Wang (2017)
10.1007/s00438-016-1237-5
Isolation, characterization, and marker utility of KCRE1, a transcriptionally active Ty1/copia retrotransposon from Kandelia candel
W. Liu (2016)
10.3389/fpls.2016.01448
Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response
P. Negi (2016)
10.1007/s11295-016-1036-5
Genome-wide analysis of LTR-retrotransposon expression in leaves of Populus × canadensis water-deprived plants
T. Giordani (2016)
10.1007/s00299-015-1763-3
Molecular characterization of a transcriptionally active Ty1/copia-like retrotransposon in Gossypium
Yuefen Cao (2015)
10.1186/s12870-015-0550-1
Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic
H. Marcon (2015)
10.1016/j.bbagrm.2014.07.017
LTR retrotransposons, handy hitchhikers of plant regulation and stress response.
Marie-Angèle Grandbastien (2015)
10.1016/J.SCIENTA.2014.12.024
DKRE1—The first full-length Ty1-copia-like retrotransposon in persimmon: Isolation, characteristic and potential involvement in occurrence of bud mutations
X. Du (2015)
10.1186/1471-2229-14-86
Molecular characterization of mutations in white-flowered torenia plants
M. Nishihara (2014)
Characterization of a novel retrotransposon TriRe‒1 using nullisomic-tetrasomic lines of hexaploid wheat
Y. Monden (2014)
10.1007/s11295-013-0631-y
Isolation, identification, and characterization of genomic LTR retrotransposon sequences from masson pine (Pinus massoniana)
Fuhua Fan (2013)
10.1016/J.BSE.2013.03.039
Isolation and characterization of RARE-1, a Ty1/copia-like retrotransposon domesticated in the genome of Rhizophora apiculata
X. Lin (2013)
10.1007/978-3-642-31842-9_14
LTR Retrotransposons as Controlling Elements of Genome Response to Stress
Quynh Trang Bui (2012)
10.1007/s11295-012-0563-y
LTR-retrotransposon diversity and transcriptional activation under phytoplasma stress in Ziziphus jujuba
J. Sun (2012)
10.1105/tpc.111.095232
Retrotransposons Control Fruit-Specific, Cold-Dependent Accumulation of Anthocyanins in Blood Oranges[W][OA]
E. Butelli (2012)
10.1186/1756-0500-5-432
Corky, a gypsy-like retrotransposon is differentially transcribed in Quercus suber tissues
M. Rocheta (2012)
10.4161/mge.1.1.16433
Identification and characterization of jute LTR retrotransposons
Salim Ahmed (2011)
10.1134/S2079059711060098
LTR retrotransposons in plants
I. Sormacheva (2011)
Isolation, characterisation and expression of Ty1-copia retrotransposons in Agave tequilana
Ishtiaq Khaliq (2010)
Genome-wide detection of Ty1-copia and Ty3-gypsy group retrotransposons in Japanese apricot ( Prunus mume Sieb. et Zucc.)
F. Wang (2010)
10.5897/AJB09.1994
Sodium chloride causes variation in organic acids and proteins in tomato root
Chen JenHshuan (2010)
10.1016/J.SCIENTA.2010.09.013
Genetic diversity of Ty1-copia retrotransposons in a wild species of Cucumis (C. hystrix).
B. Jiang (2010)
10.1093/jxb/ern329
Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development
Q. Liu (2009)
See more
Semantic Scholar Logo Some data provided by SemanticScholar