← Back to Search

Get Citationsy

# Marcinkiewicz Summability Of Fourier Series, Lebesgue Points And Strong Summability

F. Weisz

Published 2017 · Mathematics

Save to my Library

Download PDF

Download via 🐼 PaperPanda
Download via oaDOI
Download via OAB
Download via LibKey
Download via Google
Google Scholar

Analyze on Scholarcy
Visualize in Litmaps
Share

Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager

Time to take this seriously.

Under some conditions on $${\theta}$$θ, we characterize the set of convergence of the Marcinkiewicz-$${\theta\mbox{-}}$$θ-means of a function $${f \in L_1(\mathbb{T}^d)}$$f∈L1(Td). More exactly, the $${\theta\mbox{-}}$$θ-means converge to f at each modified strong Lebesgue point. The same holds for a weaker version of Lebesgue points, for the so called modified Lebesgue points of $${f \in L_p(\mathbb{T}^d)}$$f∈Lp(Td), whenever $${1 < p < \infty}$$1

This paper references

10.1007/BF01447779

Untersuchungen über Fouriersche Reihen

L. Fejér (1903)

10.1007/BF01457565

Recherches sur la convergence des séries de fourier

H. Lebesgue (1905)

10.4064/FM-25-1-162-189

The strong summability of Fourier series

G. Hardy (1935)

10.1112/JLMS/S1-14.3.162

Sur la Sommabilité Forte de Séries de Fourier

Józef Marcinkiewicz (1939)

Sur une méthode remarquable de sommation des séries doubles de Fourier

J. Marcinkiewicz (1939)

10.1112/PLMS/S2-47.1.326

On the Convergence and Summability of Power Series on the Circle of Convergence (II)

A. Zygmund (1942)

10.2307/2004319

Treatise of Trigonometric Series

N. K. Bary (1964)

10.2140/PJM.1967.20.261

Generalization of a theorem of Marcinkiewicz.

H. Miller (1967)

10.1070/IM1968V002N01ABEH000627

LINEAR SUMMATION METHODS AND THE ABSOLUTE CONVERGENCE OF FOURIER SERIES

R. Trigub (1968)

10.1070/IM1968V002N05ABEH000702

A GENERALIZATION OF A THEOREM OF MARCINKIEWICZ

L. V. Žižiašvili (1968)

10.1090/S0002-9904-1971-12793-3

On the convergence of multiple Fourier series

C. Fefferman (1971)

10.1007/bf01462249

Points of strong summability of Fourier series

O. D. Gabisoniya (1973)

10.1007/BF00967027

Application of the Fourier transform to summability of fourier series

É. S. Belinskii (1977)

10.1007/BF02630362

The space BMO and strong means of Fourier series

V. Rodin (1990)

10.1007/BF01236788

Rectangular oscillation of the sequence of partial sums of a multiple Fourier series and absence of the BMO property

V. Rodin (1992)

10.1007/978-94-009-0283-1

Trigonometric Fourier Series and Their Conjugates

L. Zhizhiashvili (1996)

10.1090/S0002-9939-97-04153-1

Summability of Fourier series with the method of lacunary arithmetical means at the Lebesgue points

E. Belinsky (1997)

10.1007/S006050070004

Cesaro Summability with Respect to Two-Parameter Walsh Systems

P. Simon (2000)

10.1007/978-94-017-3183-6_5

Summability of D-Dimensional Trigonometric-Fourier Series

F. Weisz (2002)

10.1007/978-1-4020-2876-2

Fourier Analysis and Approximation of Functions

R. Trigub (2004)

10.1016/j.jat.2004.02.003

(C, alpha) summability of Walsh-Kaczmarz-Fourier series

P. Simon (2004)

10.1016/J.JMAA.2004.11.001

Marcinkiewicz–Fejer means of d-dimensional Walsh–Fourier series

U. Goginava (2005)

10.1007/S00605-005-0358-4

The Segal Algebra ${\bf S}_0({\Bbb R}^d)$ and Norm Summability of Fourier Series and Fourier Transforms

H. Feichtinger (2006)

10.1016/j.jat.2006.01.001

Almost everywhere convergence of (C, alpha)-means of cubical partial sums of d-dimensional Walsh-Fourier series

U. Goginava (2006)

10.1017/S0305004106009273

Wiener amalgams and pointwise summability of Fourier transforms and Fourier series

H. Feichtinger (2006)

The maximal operator of Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series

U. Goginava (2006)

LEBESGUE CONSTANTS OF MULTIPLE FOURIER SERIES

E. Liflyand (2006)

10.1016/j.jat.2006.08.006

Pointwise convergence of cone-like restricted two-dimensional (C, 1) means of trigonometric Fourier series

G. Gát (2007)

10.1556/SSCMATH.2009.1099

On the Marcinkiewicz-Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system

G. Gát (2009)

10.1016/J.JMAA.2011.02.021

Marcinkiewicz-summability of multi-dimensional Fourier transforms and Fourier series

F. Weisz (2011)

10.1007/S00365-014-9234-6

BMO-Estimation and Almost Everywhere Exponential Summability of Quadratic Partial Sums of Double Fourier Series

U. Goginava (2013)

10.1007/S10114-013-1766-3

Almost everywhere convergence of sequences of Cesàro and Riesz means of integrable functions with respect to the multidimensional Walsh system

G. Gát (2014)

10.1007/S00041-014-9345-2

Maximal Operators of Vilenkin–Nörlund Means

L. Persson (2015)

10.1016/J.JMAA.2015.06.060

Lebesgue points of double Fourier series and strong summability

F. Weisz (2015)

This paper is referenced by