Online citations, reference lists, and bibliographies.

Equilibrium And Non-equilibrium Properties Of Superfluids And Superconductors

Walter F. Wreszinski
Published 2015 · Mathematics, Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
We review some rigorous results on the equilibrium and non-equilibrium properties of superfluids and superconductors.
This paper references
10.1007/BF01013973
Off-diagonal long-range order and the Meissner effect
G. Sewell (1990)
Comm
R. Haag (1974)
10.1017/S0334270000002228
Equilibrium states of a Bose gas with repulsive interactions
Ola Bratteli (1980)
10.1016/S0031-8914(35)90097-0
Supraleitung und diamagnetismus
F. London
10.1103/PhysRevLett.61.2582
The XY model has long-range order for all spins and all dimensions greater than one.
Kennedy (1988)
10.1007/s40509-015-0030-1
The Meissner effect in the ground state of free charged Bosons in a constant magnetic field
W. Wreszinski (2014)
10.1016/S0081-1947(08)60704-3
Theoretical Aspects of Superconductivity
M. R. Schafeoth (1960)
10.1016/B978-0-08-015816-7.50020-1
ON THE THEORY OF SUPERFLUIDITY
N. Bogolyubov (1947)
Comm
W. Thirring (1967)
10.1007/BF01645661
On the mathematical structure of the B.C.S.-model. II
W. Thirring (1967)
10.1007/BF02731446
The mathematical structure of the bardeen-cooper-schrieffer model
R. Haag (1962)
10.1063/1.1985025
On nonhomogeneous Bose condensation
J. Pulé (2005)
10.1080/00107514.2011.595502
Introduction to Quantum Statistical Mechanics, 2nd edn., by N.N. Bogolubov and N.N. Bogolubov Jr
S. Virmani (2011)
10.1007/BF00047144
Quantum theory of collective phenomena
S. Panfil (1991)
-In -r --
Y. Lu (2006)
Many-Body Boson Systems: Half a Century Later
Andr'e F. Verbeure (2010)
10.1063/1.1665084
Time Translations in the Algebraic Formulation of Statistical Mechanics
D. A. Dubin (1970)
10.1007/978-3-662-09089-3
Operator algebras and quantum statistical mechanics
Ola Bratteli (1979)
10.1103/PhysRev.106.1135
Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties
T. Lee (1957)
spontaneous symmetry breaking and Bogoliubov quasi-averages
W.F.Wreszinski (1607)
Operator algebras and quantum statistical mechanics II
O. Bratelli (1997)
10.1088/1751-8113/42/1/015207
On the mathematical theory of superfluidity
Geoffrey L. Sewell (2009)
10.1103/PhysRevLett.90.060404
Bragg spectroscopy of the multibranch Bogoliubov spectrum of elongated Bose-Einstein condensates.
J. Steinhauer (2003)
Mathematical methods in physics : distributions, Hilbert space operators and variational methods
P. Blanchard (2003)
10.1103/PHYSREVLETT.112.095301
Galilean invariance in confined quantum systems: implications for spectral gaps, superfluid flow, and periodic order.
András Sütő (2014)
On Bose condensation
M. Fannes (1982)
10.1103/PhysRev.104.576
Bose-Einstein Condensation and Liquid Helium
O. Penrose (1956)
10.1007/BF01646422
On the asymptotic exactness of the Bogoliubov approximation for many boson systems
J. Ginibre (1968)
10.1063/1.4905084
Landau superfluids as nonequilibrium stationary states
Walter F. Wreszinski (2015)
10.1007/978-1-4899-6435-9_3
The Microscopic Description of Superfluidity
G. Baym (1968)
10.1063/1.3129489
ON THE INFIMUM OF THE ENERGY-MOMENTUM SPECTRUM OF A HOMOGENEOUS BOSE GAS
H. D. Cornean (2005)
10.1098/rspa.1935.0048
The electromagnetic equations of the supraconductor
F. London (1935)
Math
H. D. Cornean (2009)
10.1007/978-3-662-04894-8
Many-Body Problems and Quantum Field Theory
P. Martin (2002)
10.1016/j.aop.2007.02.002
Stability and related properties of vacua and ground states
W. Wreszinski (2008)
Many-body problems and quantum field theory : an introduction
P. Martin (2002)
der Physik
J. L. van Hemmen. Fortschr (1978)
10.1163/9789004337862__com_160213
Paris
Neda Sheibani (1894)
Jour
D. A. Dubin (1970)
10.1090/s0273-0979-1982-15056-x
Review: Ola Bratelli and Derek W. Robinson, Operator algebras and quantum statistical mechanics, Volumes I and II
S. Sakai (1982)
10.1007/BF02097001
Orthogonality and completeness of the Bethe Ansatz eigenstates of the nonlinear Schroedinger model
T. C. Dorlas (1993)
In F
M. R. Schafroth (1960)
Springer
O. Bratelli (1997)
10.1103/PhysRev.134.B1410
TIME SYMMETRY IN THE QUANTUM PROCESS OF MEASUREMENT
Y. Aharonov (1964)
10.1007/BF01893620
Spin waves and the BCS model
A. Wehrl (1971)
10.1007/BF01651541
Stability and equilibrium states
R. Haag (1974)
10.1016/j.physrep.2014.03.001
On reduction of the wave-packet, decoherence, irreversibility and the second law of thermodynamics
H. Narnhofer (2014)
10.1007/BF01940765
Stability properties and the KMS condition
Ola Bratteli (1978)
10.1142/1118
Ordering phenomena in condensed matter physics
Z. Galasiewicz (1991)
10.1007/s40509-015-0060-8
Model of antiferromagnetic superconductivity
Geoffrey L. Sewell (2015)
10.1103/PhysRev.112.1900
Random-phase approximation in the theory of superconductivity
P. Anderson (1958)
10.1142/8373
Asymptotic Time Decay in Quantum Physics
Domingos H. U. Marchetti (2012)
10.1103/PhysRev.130.1605
Exact analysis of an interacting bose gas. I. the general solution and the ground state
E. Lieb (1963)
10.1088/0305-4470/38/28/003
Onsager's inequality, the Landau-Feynman ansatz and superfluidity
W. Wreszinski (2005)
10.1103/PhysRev.108.1175
Theory of superconductivity
J. Schrieffer (1957)
10.1063/1.4941723
The Bardeen–Cooper–Schrieffer functional of superconductivity and its mathematical properties
Christian Hainzl (2016)
10.1006/aphy.2001.6220
Covariant Thermodynamics of Quantum Systems: Passivity, Semipassivity, and the Unruh Effect
Bernd Kuckert (2002)
10.1007/s10955-013-0795-8
Slippery Wave Functions
Leo P. Kadanoff (2013)
10.1007/BF01646632
Constraints imposed upon a state of a system that satisfies the K.M.S. boundary condition
M. Sirugue (1970)
10.1016/S0034-4877(07)80074-7
Bose-Einstein Condensation and Spontaneous Symmetry Breaking
E. Lieb (2007)
Phys
J. Bardeen (1957)
Jour
J. H. Van Leeuwen (1921)
Rev
J. Steinhauer (2003)
Quantum Mechanics and Its Emergent Macrophysics
G. Sewell (2002)
10.1103/PhysRev.130.1616
Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum
E. Lieb (1963)
10.1103/PhysRev.100.463
Superconductivity of a charged ideal Bose gas
M. Schafroth (1955)
Comm
W. Thirring (1968)
Physica
F. London (1935)
Brüning
E P. Blanchard (2003)
10.1088/0031-9112/25/5/033
Statistical Mechanics: A Set of Lectures
M. Moore (1974)
10.1007/bf01213596
Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. V. Lower bounds and path integrals
René Carmona (1981)
10.1063/1.3056962
New method in the theory of superconductivity. II
V. V. Tolmachev (1958)
10.1063/1.1703687
Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension
M. Girardeau (1960)
10.1007/BF02745585
On a new method in the theory of superconductivity
N. N. Bogoljubov (1958)
10.1002/prop.19780260702
Linear Fermion Systems, Molecular Field Models, and the KMS Condition
Leo van Hemmen (1978)
10.1119/1.1971507
The Principles of the Theory of Solids
J. Ziman (1965)
10.1142/7623
Introduction to quantum statistical mechanics
N. N. Bogolubov (1982)
10.1007/s00220-008-0521-6
The Lieb-Liniger Model as a Limit of Dilute Bosons in Three Dimensions
R. Seiringer (2008)
10.1016/S0370-1573(00)00132-0
The Bogoliubov model of weakly imperfect Bose gas
V. Zagrebnov (2001)
10.1063/1.1704196
Momentum Distribution in the Ground State of the One‐Dimensional System of Impenetrable Bosons
A. Lenard (1964)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar