Online citations, reference lists, and bibliographies.
← Back to Search

Molecular Engineering Of Antimicrobial Peptides: Microbial Targets, Peptide Motifs And Translation Opportunities

P. Cardoso, Hugh D Glossop, Thomas G Meikle, A. Aburto-Medina, C. Conn, V. Sarojini, Céline Valéry
Published 2021 · Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.
This paper references
Unique structural modifications are present
MR Pelletier (2013)
10.1128/AEM.66.11.4945-4953.2000
PCR Bias in Ecological Analysis: a Case Study for Quantitative Taq Nuclease Assays in Analyses of Microbial Communities
S. Becker (2000)
10.1073/PNAS.86.13.5054
A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence.
S. Miller (1989)
10.12688/f1000research.channels.326
Antimicrobial resistance.
T. Naimi (2001)
10.1093/jac/dky019
Discovery and development of new antibacterial drugs: learning from experience?
Nicole Jackson (2018)
10.1111/j.1365-2958.2007.05986.x
The antimicrobial peptide‐sensing system aps of Staphylococcus aureus
M. Li (2007)
10.4049/jimmunol.1004179
Constitutive and Inflammation-Dependent Antimicrobial Peptides Produced by Epithelium Are Differentially Processed and Inactivated by the Commensal Finegoldia magna and the Pathogen Streptococcus pyogenes
I. Frick (2011)
10.1093/bioinformatics/btt055
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit
Sander Pronk (2013)
10.3168/JDS.S0022-0302(03)73776-X
Impact of nisin producing culture and liposome-encapsulated nisin on ripening of Lactobacillus added-Cheddar cheese.
R. Benech (2003)
10.1021/acsami.6b15859
Feasibility Study Exploring the Potential of Novel Battacin Lipopeptides as Antimicrobial Coatings.
G. H. De Zoysa (2017)
10.1016/J.COI.2005.11.004
Cationic host defense (antimicrobial) peptides.
K. Brown (2006)
10.1046/j.1365-2958.2002.03146.x
Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL‐37
A. Schmidtchen (2002)
antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. ISBN 9789240000193
(2019)
10.1073/pnas.1717159115
Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance
D. A. Kennedy (2018)
10.1111/j.1365-2958.2010.07150.x
Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides
C. Herrera (2010)
10.1159/000339961
Extracellular DNA within a Nontypeable Haemophilus influenzae-Induced Biofilm Binds Human Beta Defensin-3 and Reduces Its Antimicrobial Activity
E. A. Jones (2012)
10.1146/annurev.biochem.71.110601.135414
Lipopolysaccharide endotoxins.
C. Raetz (2002)
10.1094/MPMI-20-11-1421
The lipid lysyl-phosphatidylglycerol is present in membranes of Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic growth conditions.
Christian Sohlenkamp (2007)
10.1007/s00249-015-1094-x
The effect of amidation on the behaviour of antimicrobial peptides
M. Mura (2015)
10.1016/j.addr.2014.10.013
Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials.
Z. Y. Ong (2014)
10.1586/EDM.10.6
Staphylococcus colonization of the skin and antimicrobial peptides.
M. Otto (2010)
10.3389/fmicb.2018.02928
Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens
Elizabeth Peterson (2018)
10.1111/j.1462-2920.2011.02657.x
The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix.
Kelly M. Colvin (2012)
10.1046/j.1462-5822.2004.00367.x
Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system
C. Vuong (2004)
Antibacterial agents in preclinical development: an open access database
(2019)
Antilisterial activity
AJ Degnan (1993)
Role of peptide selfassembly in antimicrobial peptides
X Tian (2015)
Drugs@FDA: FDA-approved drugs. Food and Drug Administration
(2020)
2018)Why the evolution of vaccine resistance
DA Kennedy (2018)
10.1073/pnas.1609893113
Mapping membrane activity in undiscovered peptide sequence space using machine learning
Ernest Y Lee (2016)
10.1128/JB.01563-08
The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans.
P. Suntharalingam (2009)
10.1098/rstb.2015.0292
Bacterial strategies of resistance to antimicrobial peptides
Hwang-Soo Joo (2016)
10.3390/ph6121543
Antimicrobial Peptides
A. Bahar (2013)
10.2147/IDR.S173867
Antibiotic resistance: a rundown of a global crisis
Bilal Aslam (2018)
10.2147/IJN.S8311
Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles
J. Lai (2010)
10.1159/000491497
Design and Assessment of Anti-Biofilm Peptides: Steps Toward Clinical Application
Melanie Dostert (2018)
10.1002/9781118592403
Peptide Materials: from nanostructures to applications
C. Alemán (2013)
Helical antimicrobial peptides assemble
EY Lee (2019)
10.1038/s41467-019-12508-8
Fusion dynamics of cubosome nanocarriers with model cell membranes
B. Dyett (2019)
10.1046/j.1365-2958.2003.03653.x
The BceRS two‐component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis
R. Ohki (2003)
10.1073/PNAS.86.18.7077
Salmonella typhimurium phoP virulence gene is a transcriptional regulator.
E. Groisman (1989)
10.1126/SCIENCE.286.5439.525
Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6.
D. Yang (1999)
10.1016/j.bbamem.2012.12.010
The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica.
Jaeyong Cho (2013)
10.1126/SCIENCE.295.5559.1487
Extracellular DNA required for bacterial biofilm formation.
C. Whitchurch (2002)
10.2166/WST.1993.0528
Biofilms and Environmental Protection
H. Flemming (1993)
10.1021/np500370c
NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery
H. Mohimani (2014)
10.1111/mmi.12004
NaxD is a deacetylase required for lipid A modification and Francisella pathogenesis
A. Llewellyn (2012)
Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis.
J. Lam (1980)
10.1021/mp200419b
Antimicrobial properties of amyloid peptides.
B. Kagan (2012)
10.1371/journal.ppat.1002241
Inhibition of Competence Development, Horizontal Gene Transfer and Virulence in Streptococcus pneumoniae by a Modified Competence Stimulating Peptide
Luchang Zhu (2011)
10.1021/JA027993G
Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.
J. Schneider (2002)
10.1128/JB.180.15.4002-4006.1998
Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli.
S. Stumpe (1998)
10.1016/j.bbamem.2015.07.004
Effect of acyl chain length on therapeutic activity and mode of action of the CX-KYR-NH2 antimicrobial lipopeptide.
Sawinee Nasompag (2015)
10.1128/JB.01221-06
Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus.
A. Bera (2007)
10.1038/35086601
Antibacterial agents based on the cyclic d,l-α-peptide architecture
S. Fernandez-Lopez (2001)
10.1371/journal.pone.0066557
LAMP: A Database Linking Antimicrobial Peptides
Xiaowei Zhao (2013)
10.1371/journal.pcbi.1003822
Pep2Path: Automated Mass Spectrometry-Guided Genome Mining of Peptidic Natural Products
M. Medema (2014)
10.1016/j.chembiol.2015.01.002
D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections.
César de la Fuente-Núñez (2015)
10.1002/PSC.702
Headgroup structure and fatty acid chain length of the acidic phospholipids modulate the interaction of membrane mimetic vesicles with the antimicrobial peptide protegrin‐1
Weiguo Jing (2005)
10.1039/c6np00113k
Rediscovering the octapeptins.
T. Velkov (2017)
10.1107/S0907444905017270
Structure of the lipopeptide antibiotic tsushimycin.
G. Bunkóczi (2005)
10.1002/bip.21328
Self‐assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials
H. Cui (2010)
10.1111/j.1365-2958.2006.05452.x
The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes
Kathrin Thedieck (2006)
10.1007/s00018-011-0717-3
Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches
A. Giuliani (2011)
10.3389/fphar.2018.00281
Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds
Anja Pfalzgraff (2018)
10.1177/0022034516679973
Antimicrobial Peptides: Mechanisms of Action and Resistance
B. Bechinger (2017)
10.1016/j.drudis.2010.05.002
Current trends in antimicrobial agent research: chemo- and bioinformatics approaches.
R. Hammami (2010)
10.1016/S0966-842X(00)01913-2
Mechanisms of biofilm resistance to antimicrobial agents.
T. Mah (2001)
Mechanism of resistance in metronida
A Dhand (2009)
Bacterial multidrug efflux
JA Delmar (2014)
10.3390/s120302519
Quorum Sensing and Bacterial Social Interactions in Biofilms
Y. Li (2012)
10.1128/JB.183.18.5395-5401.2001
Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function.
M. Hentzer (2001)
10.1021/BI0360915
How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp.
M. Sforça (2004)
10.1128/AAC.00503-10
The ABC Transporter AnrAB Contributes to the Innate Resistance of Listeria monocytogenes to Nisin, Bacitracin, and Various β-Lactam Antibiotics
B. Collins (2010)
10.1016/J.COCIS.2018.11.003
Machine learning antimicrobial peptide sequences: Some surprising variations on the theme of amphiphilic assembly.
M. Lee (2018)
10.1073/PNAS.85.15.5409
Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system.
J. P. Tam (1988)
10.1002/anie.200705797
Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues.
Eric Biron (2008)
10.1111/J.1600-051X.1995.TB01765.X
The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature.
M. Quirynen (1995)
10.1038/nbt.1538
Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12
T. Hosaka (2009)
10.1111/j.1365-2958.2008.06562.x
Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA‐dependent formation of alanyl‐phosphatidylglycerol
S. Klein (2009)
10.1007/978-1-4939-6737-7_31
Hemolytic Activity of Antimicrobial Peptides.
A. Oddo (2017)
10.1038/s41573-019-0058-8
Antimicrobial host defence peptides: functions and clinical potential
N. Mookherjee (2020)
10.3390/molecules21010037
Peptide KSL-W-Loaded Mucoadhesive Liquid Crystalline Vehicle as an Alternative Treatment for Multispecies Oral Biofilm
J. Bernegossi (2015)
10.1038/nmat4298
Liquid-crystalline ordering of antimicrobial peptide-DNA complexes controls TLR9 activation.
N. Schmidt (2015)
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
10.1016/J.BBAMEM.2006.04.006
Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action.
D. I. Chan (2006)
10.1128/JB.161.1.299-306.1985
Structure of the linkage units between ribitol teichoic acids and peptidoglycan.
N. Kojima (1985)
10.1016/j.peptides.2007.10.028
Effect of cholesterol on the interaction of the amphibian antimicrobial peptide DD K with liposomes
R. Verly (2008)
10.1126/SCIENCE.1093783
Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers
G. Silva (2004)
10.1016/J.SBI.2006.01.011
Protein aggregation and amyloidosis: confusion of the kinds?
F. Rousseau (2006)
10.1111/j.1365-2672.1997.tb03294.x
Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin‐resistant strains at 10°C and 30°C
A. S. Mazzotta (1997)
10.1111/j.1365-2958.2010.07455.x
Methylthioadenosine/S‐adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism
N. Parveen (2011)
10.1038/s41467-017-01447-x
Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity
Lee Schnaider (2017)
10.1128/IAI.66.3.1008-1016.1998
Transposon-Derived Brucella abortusRough Mutants Are Attenuated and Exhibit Reduced Intracellular Survival
C. Allen (1998)
10.1039/C6RA20282A
Self-assembling ultrashort NSAID-peptide nanosponges: multifunctional antimicrobial and anti-inflammatory materials
Alice P. McCloskey (2016)
10.1128/JB.187.15.5387-5396.2005
Cationic antimicrobial peptide resistance in Neisseria meningitidis.
Y. Tzeng (2005)
10.1038/s41467-019-08868-w
Helical antimicrobial peptides assemble into protofibril scaffolds that present ordered dsDNA to TLR9
Ernest Y Lee (2019)
10.1093/nar/gkx320
PRISM 3: expanded prediction of natural product chemical structures from microbial genomes
M. Skinnider (2017)
10.1021/CR030103A
Glycopeptide and lipoglycopeptide antibiotics.
D. Kahne (2005)
GCL (2018b) Machine learning antimicrobial peptide sequences: some surprising variations on
MW Lee (2018)
Functional interaction of human neutrophil
E de Leeuw (2010)
Fight against antimicrobial
RE Duval (2019)
The Alzheimer's disease-associated amyloid
SJ Soscia (2010)
10.1128/CMR.15.2.167-193.2002
Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms
R. Donlan (2002)
10.1073/PNAS.89.24.11939
Resistance to host antimicrobial peptides is necessary for Salmonella virulence.
E. Groisman (1992)
10.4315/0362-028X-55.7.552
Influence of Beef Tallow and Muscle on the Antilisterial Activity of Pediocin AcH and Liposome-Encapsulated Pediocin AcH.
A. J. Degnan (1992)
10.1021/acsnano.7b05234
Crystallinity of Double-Stranded RNA-Antimicrobial Peptide Complexes Modulates Toll-Like Receptor 3-Mediated Inflammation.
Ernest Y Lee (2017)
10.3233/JAD-160517
Anti-Viral Properties of Amyloid-β Peptides.
K. Bourgade (2016)
10.1128/AAC.44.8.2086-2092.2000
Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive Bacteria
C. Friedrich (2000)
10.1039/c8sm01888j
Resolving the structural interactions between antimicrobial peptides and lipid membranes using small-angle scattering methods: the case of indolicidin.
J. Nielsen (2018)
10.1371/journal.ppat.1002891
D-Alanylation of Lipoteichoic Acids Confers Resistance to Cationic Peptides in Group B Streptococcus by Increasing the Cell Wall Density
Ron Saar Dover (2012)
10.1073/PNAS.85.14.5072
Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes.
B. Christensen (1988)
10.1016/j.ijpharm.2017.04.082
Cubosomes post-loaded with antimicrobial peptides: characterization, bactericidal effect and proteolytic stability.
Lukas Boge (2017)
10.1080/14712598.2017.1315402
An overview of antimicrobial peptides and the latest advances in their development
Josep M. Sierra (2017)
10.1128/JB.01313-10
Heme utilization by nontypeable Haemophilus influenzae is essential and dependent on Sap transporter function.
K. Mason (2011)
10.1002/ADFM.201904007
Multifunctional Nano‐Biointerfaces: Cytocompatible Antimicrobial Nanocarriers from Stabilizer‐Free Cubosomes
Mahsa Zabara (2019)
Design and assessment
M Dostert (2019)
Structure-based discovery
KJ Simmons (2010)
CRH (2004a) MsbA Transporter-dependent Lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of francisella novicida LpxE expressed in Escherichia coli
X Wang (2004)
10.1046/j.1365-2958.1998.01065.x
Role of lipid‐bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics
H. Brötz (1998)
10.1096/fj.09-145474
A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo
A. Pini (2010)
10.1128/AAC.00477-08
Evaluation of Strategies for Improving Proteolytic Resistance of Antimicrobial Peptides by Using Variants of EFK17, an Internal Segment of LL-37
A. Strömstedt (2008)
10.1021/ja076300z.s001
Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel.
Daphne A. Salick (2007)
10.1002/ADMI.201800073
Peptide‐Based Approaches to Fight Biofouling
Gowri Priya Sakala (2018)
10.1089/dna.2009.1011
Effect of extracellular DNA destruction by DNase I on characteristics of forming biofilms.
V. Tetz (2010)
10.1016/J.BBAMEM.2006.03.021
Alpha-helical antimicrobial peptides--using a sequence template to guide structure-activity relationship studies.
I. Zelezetsky (2006)
Further studies of the helix dipole model: effects of a free alpha-NH3+ or alpha-COO- group on helix stability.
R. Fairman (1989)
10.1002/bip.22073
Protease‐resistant peptide design—empowering nature's fragile warriors against HIV
Matthew T. Weinstock (2012)
10.1111/j.1365-2958.2006.05460.x
The non‐typeable Haemophilus influenzae Sap transporter provides a mechanism of antimicrobial peptide resistance and SapD‐dependent potassium acquisition
K. Mason (2006)
10.1016/j.peptides.2012.07.001
Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application
Y. Li (2012)
10.1099/mic.0.2008/022301-0
Capsule polysaccharide is a bacterial decoy for antimicrobial peptides.
Enrique Llobet (2008)
10.1177/0022034515587690
Effects of Material Properties on Bacterial Adhesion and Biofilm Formation
F. Song (2015)
10.1016/j.colsurfb.2017.01.004
Incorporation of antimicrobial peptides in nanostructured lipid membrane mimetic bilayer cubosomes.
Thomas G. Meikle (2017)
Khairalla AS (2019) Two novel synthetic peptides inhibit quorum sensing-dependent biofilm formation and some virulence factors in Pseudomonas aeruginosa PAO1
MN Taha (2019)
Mechanism of resistance in metronidazole. In: Mayers DL (ed) Antimicrobial drug resistance
A Dhand (2009)
10.1016/j.bbamem.2015.02.009
Mechanisms of resistance to antimicrobial peptides in staphylococci.
Hwang-Soo Joo (2015)
10.1074/JBC.M411374200
A Crucial Role for Exopolysaccharide Modification in Bacterial Biofilm Formation, Immune Evasion, and Virulence*
C. Vuong (2004)
10.1371/journal.ppat.1004919
L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to Antimicrobial Peptides by Delaying Interaction with the Membrane
Filipe Carvalho (2015)
10.3390/ijms140918758
Peptide-Lipid Interactions: Experiments and Applications
Stefania Galdiero (2013)
10.1016/j.biomaterials.2011.02.013
The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides.
Guangzheng Gao (2011)
10.1074/jbc.M110.116814
Limitations of Peptide Retro-inverso Isomerization in Molecular Mimicry*
C. Li (2010)
10.1080/02713680590968637
A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs
Y. J. Gordon (2005)
10.1128/AAC.48.9.3349-3357.2004
De Novo Design of Potent Antimicrobial Peptides
Vladimír Frecer (2004)
10.1124/pr.55.1.2
Mechanisms of Antimicrobial Peptide Action and Resistance
M. Yeaman (2003)
10.3390/antibiotics8030133
The Application of Ribosome Engineering to Natural Product Discovery and Yield Improvement in Streptomyces
Saibin Zhu (2019)
10.5301/ijao.5000051
Extracellular DNA in Biofilms
L. Montanaro (2011)
10.1038/nbt1267
Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies
R. Hancock (2006)
10.1021/bi035130
Interaction of antimicrobial peptides with lipopolysaccharides.
L. C. Ding (2003)
10.1128/IAI.73.1.599-608.2005
A Mutation in the sap Operon Attenuates Survival of Nontypeable Haemophilus influenzae in a Chinchilla Model of Otitis Media
K. Mason (2005)
10.1021/JM991031B
Solution structure of polymyxins B and E and effect of binding to lipopolysaccharide: an NMR and molecular modeling study.
P. Pristovsek (1999)
Antibiotic discovery
L Rajeev (2018)
10.1038/nrmicro1441
The co-evolution of host cationic antimicrobial peptides and microbial resistance
A. Peschel (2006)
10.1021/acs.accounts.7b00297
Supramolecular Assembly of Peptide Amphiphiles
Mark P. Hendricks (2017)
10.1371/journal.pone.0090095
De Novo Peptide Design and Experimental Validation of Histone Methyltransferase Inhibitors
James Smadbeck (2014)
10.3109/17453674.2011.581265
Biofilms in chronic diabetic foot ulcers—a study of 2 cases
D. Neut (2011)
10.3109/1040841X.2013.841639
The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms
Mira Okshevsky (2015)
10.1016/0304-4165(77)90283-5
Studies on bacterial cell wall inhibitors. II. Inhibition of peptidoglycan synthesis in vivo and in vitro by amphomycin.
H. Tanaka (1977)
10.1016/S0165-6147(02)02105-3
Antimicrobial peptides from animals: focus on invertebrates.
J. Vizioli (2002)
10.1016/j.jconrel.2016.03.025
Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV.
Sapir Ron-Doitch (2016)
10.1021/acsami.9b21783
Preparation, characterization, and antimicrobial activity of cubosome encapsulated metal nanocrystals.
Thomas G Meikle (2020)
10.1038/nrmicro2474
Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections
J. Hurdle (2010)
10.1038/nchembio.1393
Immune modulation by multifaceted cationic host defense (antimicrobial) peptides.
A. Hilchie (2013)
10.1128/CMR.15.2.155-166.2002
Bacterial Adhesion: Seen Any Good Biofilms Lately?
W. M. Dunne (2002)
10.1039/9781839161148-00395
CHAPTER 12. Self-assembled Peptide Nanostructures for Antibacterial Applications
Y. Shi (2020)
10.1016/J.COSSMS.2013.09.004
Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering.
N. Schmidt (2013)
10.1042/EBC20160077
Polishing the tarnished silver bullet: the quest for new antibiotics
M. Blaskovich (2017)
10.1128/MMBR.00016-10
Origins and Evolution of Antibiotic Resistance
J. Davies (2010)
10.1016/J.PNSC.2008.04.001
Bacterial adhesion and biofilms on surfaces
T. Garrett (2008)
Inactivation of the dlt Operon in Staphylococcus aureus confers
A Peschel (1999)
Antimicrobial activity of short
StromMB (2002)
Phospholipids ofClostridium perfringens: a reexamination
NC Johnston (2004)
10.1016/j.peptides.2003.08.024
Hagfish intestinal antimicrobial peptides are ancient cathelicidins
T. Uzzell (2003)
10.1371/journal.pone.0073843
Membrane Lipid-Modulated Mechanism of Action and Non-Cytotoxicity of Novel Fungicide Aminoglycoside FG08
Sanjib K. Shrestha (2013)
10.1016/j.bbamem.2008.09.013
Control of cell selectivity of antimicrobial peptides.
K. Matsuzaki (2009)
10.1039/c3nr00225j
Stimuli-responsive self-assembling peptides made from antibacterial peptides.
Yanfei Liu (2013)
10.1038/nrm1784
How proteins produce cellular membrane curvature
J. Zimmerberg (2006)
10.1098/rsfs.2016.0160
Molecular interactions of amyloid nanofibrils with biological aggregation modifiers: implications for cytotoxicity mechanisms and biomaterial design
D. Dharmadana (2017)
The antibiotic resistance crisis: part 1: causes and threats.
C. Ventola (2015)
10.1371/journal.pone.0054769
A Novel Retro-Inverso Peptide Inhibitor Reduces Amyloid Deposition, Oxidation and Inflammation and Stimulates Neurogenesis in the APPswe/PS1ΔE9 Mouse Model of Alzheimer’s Disease
V. Parthsarathy (2013)
10.1046/j.1365-2958.2000.01956.x
Temperature‐regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia
J. Bengoechea (2000)
10.1038/ja.2011.113
Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci
J. Kaplan (2012)
10.1046/j.1365-2958.2001.02251.x
Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial α‐defensin
A. Schmidtchen (2001)
10.1093/JAC/DKM357
Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review.
A. Zavascki (2007)
10.1016/j.bmc.2017.07.012
Machine learning-enabled discovery and design of membrane-active peptides.
Ernest Y Lee (2018)
10.1016/j.bbamem.2017.08.016
How kanamycin A interacts with bacterial and mammalian mimetic membranes.
T. John (2017)
10.1074/JBC.M409078200
MsbA Transporter-dependent Lipid A 1-Dephosphorylation on the Periplasmic Surface of the Inner Membrane
X. Wang (2004)
10.1073/pnas.1019077108
Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens
Luisa Laureti (2011)
Hydrophobicity, hydrophobic moment and angle
M Dathe (1997)
SwissADME: a free web tool
A Daina (2017)
10.1002/cbic.200700643
Using Fluorous Amino Acids to Modulate the Biological Activity of an Antimicrobial Peptide
Lindsey M. Gottler (2008)
10.1073/PNAS.96.4.1218
Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence.
P. Mayville (1999)
10.1021/ja9067063
Divalent metal ion triggered activity of a synthetic antimicrobial in cardiolipin membranes.
A. Som (2009)
10.1021/bm901130u
Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization.
Cuixia Chen (2010)
10.1128/AAC.27.4.619
Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material.
J. Nickel (1985)
10.1371/journal.ppat.1004152
Broad-Spectrum Anti-biofilm Peptide That Targets a Cellular Stress Response
César de la Fuente-Núñez (2014)
10.1016/bs.apcsb.2018.03.004
Linear Analogues of the Lipopeptide Battacin With Potent In Vitro Activity Against S. aureus.
Hugh D Glossop (2018)
10.1111/j.1365-2958.1996.tb02548.x
Molecular basis of intercellular adhesion in the biofilm‐forming Staphylococcus epidermidis
C. Heilmann (1996)
10.1111/J.1399-3011.2005.00217.X
Alginate as an auxiliary bacterial membrane: binding of membrane-active peptides by polysaccharides.
C. Chan (2005)
10.1002/ANIE.200701697
Intracellular hydrogelation of small molecules inhibits bacterial growth.
Z. Yang (2007)
10.1099/0022-1317-79-4-731
Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression.
M. Wachinger (1998)
10.1016/j.bpj.2011.01.072
Antimicrobial protegrin-1 forms amyloid-like fibrils with rapid kinetics suggesting a functional link.
H. Jang (2011)
10.1021/JA075373F
Antimicrobial activity and protease stability of peptides containing fluorinated amino acids.
H. Meng (2007)
10.1093/nar/gkh025
APD: the Antimicrobial Peptide Database
Zhe Wang (2004)
10.1016/j.ejpb.2018.11.009
Cubosomes for topical delivery of the antimicrobial peptide LL‐37
Lukas Boge (2019)
10.1016/S0167-7799(00)88999-4
Recent developments in retro peptides and proteins--an ongoing topochemical exploration.
M. Chorev (1995)
bial peptide repulsion. PLoS Pathogens
R Fairman (1989)
10.1186/1741-7007-8-123
Q&A: Antibiotic resistance: where does it come from and what can we do about it?
G. Wright (2010)
10.1128/CMR.00181-19
Antimicrobial Resistance in ESKAPE Pathogens
David M. P. De Oliveira (2020)
10.1007/s10482-010-9460-2
A guide to successful bioprospecting: informed by actinobacterial systematics
M. Goodfellow (2010)
10.1128/AEM.68.8.3683-3690.2002
Inhibition of Listeria innocua in Cheddar Cheese by Addition of Nisin Z in Liposomes or by In Situ Production in Mixed Culture
R. Benech (2002)
10.1016/j.ijantimicag.2010.01.015
Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria.
D. Nicolosi (2010)
10.1021/NP068056F
Laspartomycin, an acidic lipopeptide antibiotic with a unique peptide core.
D. B. Borders (2007)
10.1093/nar/gkv1278
APD3: the antimicrobial peptide database as a tool for research and education
G. Wang (2016)
10.1093/JAC/DKH546
Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections.
J. Steenbergen (2005)
10.3389/fmicb.2011.00159
Extreme Antimicrobial Peptide and Polymyxin B Resistance in the Genus Burkholderia
S. Loutet (2011)
10.1016/J.JSB.2004.12.007
Gramicidin structure and disposition in highly curved membranes.
W. Liu (2005)
10.1073/pnas.1016546108
Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair
M. Webber (2011)
10.1038/nrmicro.2017.28
Next-generation approaches to understand and combat the antibiotic resistome
Terence S. Crofts (2017)
10.1016/0168-1605(93)90217-5
Antilisterial activity of pediocin AcH in model food systems in the presence of an emulsifier or encapsulated within liposomes.
A. J. Degnan (1993)
10.3390/molecules22071217
Cyclic Peptides as Novel Therapeutic Microbicides: Engineering of Human Defensin Mimetics
A. Falanga (2017)
10.1002/PSC.398
Antimicrobial activity of short arginine‐ and tryptophan‐rich peptides
Morten B. Strøm (2002)
10.15190/d.2019.15
FDA approved antibacterial drugs: 2018-2019
S. Andrei (2019)
10.3390/pharmaceutics11040166
A New Hope: Self-Assembling Peptides with Antimicrobial Activity
L. Lombardi (2019)
cyte resistance and systemic virulence
S Maity (2014)
2016)Mappingmembrane activity in undiscovered peptide sequence space using machine learning
EY Lee (2016)
Protein SIC, a novel extracel
P Åkesson (1996)
10.1039/c5nr05233e
Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity.
L. Jiang (2015)
10.1039/c4cc03578j
Self-assembly of a tripeptide into a functional coating that resists fouling.
Sibaprasad Maity (2014)
10.3389/fmicb.2013.00353
Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance
F. Guilhelmelli (2013)
10.3109/10837450.2011.572893
Polymyxin B self-associated with phospholipid nanomicelles
Kenneth S. Brandenburg (2012)
10.1128/microbiolspec.gpp3-0023-2018
Staphylococcal biofilms.
M. Otto (2008)
10.1074/jbc.274.13.8405
Inactivation of the dlt Operon inStaphylococcus aureus Confers Sensitivity to Defensins, Protegrins, and Other Antimicrobial Peptides*
A. Peschel (1999)
10.1057/9781137349835_5
The New Hope
M. Bhagavan (2013)
10.1021/BI049086P
Fluorous effect in proteins: de novo design and characterization of a four-alpha-helix bundle protein containing hexafluoroleucine.
K. Lee (2004)
10.1021/BI011549T
Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity.
D. Avrahami (2002)
10.1038/nrmicro1464
Multidrug-resistance efflux pumps ? not just for resistance
L. Piddock (2006)
10.1093/nar/gkt1191
AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses
Abid Qureshi (2014)
10.1021/acs.accounts.6b00653
Human α-Defensin 6: A Small Peptide That Self-Assembles and Protects the Host by Entangling Microbes.
Phoom Chairatana (2017)
10.1074/JBC.M308615200
Synthetic Peptides in the Form of Dendrimers Become Resistant to Protease Activity*
L. Bracci (2003)
10.2147/IJN.S89610
Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool
O. Scudiero (2015)
10.1128/AAC.00715-09
Klebsiella pneumoniae AcrAB Efflux Pump Contributes to Antimicrobial Resistance and Virulence
E. Padilla (2009)
10.1016/J.COCIS.2018.09.002
Influence of self-assembly on the performance of antimicrobial peptides
Sara Malekkhaiat Häffner (2018)
GraXSR proteins
M Falord (2012)
Self-association and membrane-binding
A Niemz (2001)
10.1111/J.1574-6968.1996.TB08513.X
Evidence for a role of NisT in transport of the lantibiotic nisin produced by Lactococcus lactis N8.
M. Qiao (1996)
10.4155/fsoa-2017-0156
Genomic insights into nitrofurantoin resistance mechanisms and epidemiology in clinical Enterobacteriaceae
J. Osei Sekyere (2018)
10.1016/J.BCP.2005.12.004
Use of genomics to select antibacterial targets.
M. Pucci (2006)
10.1128/IAI.67.5.2627-2632.1999
Characterization of the Importance of Polysaccharide Intercellular Adhesin/Hemagglutinin of Staphylococcus epidermidis in the Pathogenesis of Biomaterial-Based Infection in a Mouse Foreign Body Infection Model
M. Rupp (1999)
10.3390/antibiotics9020059
Bacterial Biofilm and its Role in the Pathogenesis of Disease
L. Vestby (2020)
10.1128/JB.188.6.2073-2080.2006
A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo.
S. Loutet (2006)
10.1128/JB.182.14.4077-4086.2000
A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides.
T. Guina (2000)
10.1002/cmdc.201402215
Indolicidin Targets Duplex DNA: Structural and Mechanistic Insight through a Combination of Spectroscopy and Microscopy
A. Ghosh (2014)
10.1038/srep25905
Branched Peptide, B2088, Disrupts the Supramolecular Organization of Lipopolysaccharides and Sensitizes the Gram-negative Bacteria
R. Lakshminarayanan (2016)
10.1128/AAC.01040-08
The Lipopeptide Antibiotic Friulimicin B Inhibits Cell Wall Biosynthesis through Complex Formation with Bactoprenol Phosphate
T. Schneider (2009)
10.1038/s41597-019-0154-y
DRAMP 2.0, an updated data repository of antimicrobial peptides
Xinyue Kang (2019)
10.2174/1874285801711010053
Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents
S. Singh (2017)
10.1080/17460441.2019.1550481
Steps to address anti-microbial drug resistance in today’s drug discovery
T. Parish (2019)
10.1039/B201097F
Fluorinated amino acids in protein design and engineering.
Nicholas C. Yoder (2002)
10.1111/j.1462-2920.2010.02208.x
Pseudomonas aeruginosa produces an extracellular deoxyribonuclease that is required for utilization of DNA as a nutrient source.
H. Mulcahy (2010)
10.1093/jac/dky208
Revitalizing the drug pipeline: AntibioticDB, an open access database to aid antibacterial research and development
L. J. Farrell (2018)
10.1248/CPB.57.240
Contribution of each amino acid residue in polymyxin B(3) to antimicrobial and lipopolysaccharide binding activity.
K. Kanazawa (2009)
Staphylococcal biofilms. In: Romeo T (ed) Bacterial
M Otto (2008)
The amylome, all proteins capable of forming amyloid-like fibrils
L Goldschmidt (2010)
Producer self-protection against
M Otto (1998)
10.1111/mmi.12078
ABC transporters of antimicrobial peptides in Firmicutes bacteria – phylogeny, function and regulation
S. Gebhard (2012)
10.1007/S11051-011-0278-2
Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes
Patrícia da Silva Malheiros (2011)
10.1016/j.jmii.2016.12.005
Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.
P. Y. Chung (2017)
10.1111/j.1365-2958.2009.06707.x
Inhibition of cathelicidin activity by bacterial exopolysaccharides
Michela Foschiatti (2009)
10.1039/c9sm02127b
A review on recent advances in polymer and peptide hydrogels.
S. Mondal (2020)
10.1111/J.1574-6968.1998.TB13891.X
Producer self-protection against the lantibiotic epidermin by the ABC transporter EpiFEG of Staphylococcus epidermidis Tü3298.
M. Otto (1998)
10.1016/j.jconrel.2012.03.020
Doxil®--the first FDA-approved nano-drug: lessons learned.
Y. Barenholz (2012)
10.1074/JBC.M301995200
SIC, a Secreted Protein of Streptococcus pyogenesThat Inactivates Antibacterial Peptides*
I. Frick (2003)
10.1128/JB.186.13.4124-4133.2004
The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica.
H. Lee (2004)
10.1038/srep42717
SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules
Antoine Daina (2017)
10.1021/acs.biomac.9b00291
Battacin-Inspired Ultrashort Peptides: Nanostructure Analysis and Antimicrobial Activity.
Hugh D Glossop (2019)
10.1007/s00253-017-8648-z
Amexanthomycins A–J, pentangular polyphenols produced by Amycolatopsis mediterranei S699∆rifA
X. Li (2017)
10.1160/TH03-11-0696
Human α-defensins neutralize fibrinolytic activity exerted by staphylokinase
M. Bokarewa (2004)
10.1128/IAI.72.12.7107-7114.2004
Capsule Polysaccharide Mediates Bacterial Resistance to Antimicrobial Peptides
M. A. Campos (2004)
Targeting innovation in antibiotic drug discovery and development: The need for a One Health – One Europe – One World Framework [Internet]
Matthew J Renwick (2016)
Quorum sensing and DNA release
AL Spoering (2006)
Capsule polysaccharide
E Llobet (2008)
10.1246/BCSJ.77.1915
The Contribution of the N-Terminal Structure of Polymyxin B Peptides to Antimicrobial and Lipopolysaccharide Binding Activity
N. Sakura (2004)
10.1096/fj.07-093963
A group B streptococcal pilus protein promotes phagocyte resistance and systemic virulence
Heather C. Maisey (2008)
10.3389/fmicb.2015.00699
Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment
H. L. Brown (2015)
10.1016/j.cis.2017.06.001
The interaction of antimicrobial peptides with membranes.
Oksana G Travkova (2017)
10.1128/AAC.44.11.2969-2978.2000
Stages of Polymyxin B Interaction with theEscherichia coli Cell Envelope
R. Daugelavičius (2000)
10.1002/cbic.201402024
Key Residues in Octyl‐Tridecaptin A1 Analogues Linked to Stable Secondary Structures in the Membrane
S. Cochrane (2014)
10.1093/nar/gkw243
DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides
M. Pirtskhalava (2016)
10.1021/acs.langmuir.6b00338
Lipid-Based Liquid Crystals As Carriers for Antimicrobial Peptides: Phase Behavior and Antimicrobial Effect.
Lukas Boge (2016)
10.1073/pnas.0806456105
Mechanism of a prototypical synthetic membrane-active antimicrobial: Efficient hole-punching via interaction with negative intrinsic curvature lipids
L. Yang (2008)
10.1038/nmat3998
Gradated assembly of multiple proteins into supramolecular nanomaterials
G. A. Hudalla (2014)
10.1002/JPS.1115
In vitro aerosol delivery and regional airway surface liquid concentration of a liposomal cationic peptide.
C. F. Lange (2001)
10.1016/j.peptides.2005.01.020
Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens
Y. Herasimenka (2005)
10.1016/j.semcdb.2018.02.002
Modulation of toll-like receptor signaling by antimicrobial peptides.
Ernest Y Lee (2019)
10.1111/j.1365-2958.2004.04059.x
Variation in lipid A structure in the pathogenic yersiniae
Roberto Rebeil (2004)
10.1016/j.drudis.2014.10.003
Peptide therapeutics: current status and future directions.
K. Fosgerau (2015)
10.1007/s00294-015-0514-x
Multifaceted roles of extracellular DNA in bacterial physiology
Dina Vorkapić (2015)
10.1128/AAC.01650-15
Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa
Mike Wilton (2015)
The role of extracellular DNA
M Okshevsky (2015)
Quorum sensing and bacterial social interactions
YH Li (2012)
Gramicidin structure and disposition
W Liu (2005)
Potential effect of cationic lipo
T Miyazaki (2016)
10.4103/JMS.JMS_25_17
World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics
S. Shrivastava (2017)
10.1128/AAC.47.1.317-323.2003
Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and Tobramycin
M. C. Walters (2003)
10.1080/07853890701195262
Efflux pumps as antimicrobial resistance mechanisms
K. Poole (2007)
10.1038/415389a
Antimicrobial peptides of multicellular organisms
M. Zasloff (2002)
10.1074/jbc.M117.805499
Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria
D. Nagarajan (2017)
10.1128/IAI.01197-07
Capsular Antigen Fraction 1 and Pla Modulate the Susceptibility of Yersinia pestis to Pulmonary Antimicrobial Peptides Such as Cathelicidin
E. Galván (2008)
10.1016/J.IJPHARM.2006.02.045
Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals.
R. Mueller (2006)
10.1074/JBC.M406044200
Helix Induction in Antimicrobial Peptides by Alginate in Biofilms*
C. Chan (2004)
10.1016/S0005-2736(97)00051-5
Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria.
K. Matsuzaki (1997)
10.2147/IJN.S65289
Novel gramicidin formulations in cationic lipid as broad-spectrum microbicidal agents
Danielle Amt Ragioto (2014)
10.1128/mBio.00191-10
M Protein and Hyaluronic Acid Capsule Are Essential for In Vivo Selection of covRS Mutations Characteristic of Invasive Serotype M1T1 Group A Streptococcus
J. N. Cole (2010)
10.1073/pnas.0702159104
Gram-positive three-component antimicrobial peptide-sensing system
M. Li (2007)
10.2147/IJN.S107107
Novel antimicrobial peptide–modified azithromycin-loaded liposomes against methicillin-resistant Staphylococcus aureus
X. Liu (2016)
10.1016/j.bbamem.2007.11.016
Binding of LL-37 to model biomembranes: insight into target vs host cell recognition.
R. Sood (2008)
10.7164/ANTIBIOTICS.37.172
Action of antifungal peptidolipids from Bacillus subtilis on the cell membrane of Saccharomyces cerevisiae.
F. Besson (1984)
10.1146/annurev-biophys-051013-022855
Bacterial multidrug efflux transporters.
J. A. Delmar (2014)
10.1128/AAC.02340-16
Intracellular Targeting Mechanisms by Antimicrobial Peptides
Cheng-Foh Le (2017)
Cyclic peptides as novel therapeutic
O Scudiero (2017)
2019a) Peptide-loaded cubosomes functioning as an antimicrobial unit against Escherichia coli
L Boge (2019)
Mains RE (2014) Amidation. In: Reference module in biomedical sciences
D Kumar
Antimicrobial resistance in ESKAPE
DMP De Oliveira (2020)
10.1111/j.1365-2958.2009.06795.x
Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production
Matthew S. Byrd (2009)
10.1016/J.MIB.2006.02.004
Quorum sensing and DNA release in bacterial biofilms.
A. L. Spoering (2006)
10.1155/2016/2475067
Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens
Sirijan Santajit (2016)
10.1021/cr100370n
Peptide signaling in the staphylococci.
Matthew Thoendel (2011)
10.1586/14787210.2014.976613
Antimicrobial peptides: therapeutic potentials
S. Kang (2014)
10.1172/JCI23523
Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis.
Stanislava Kocianova (2005)
10.1021/acs.molpharmaceut.6b00099
Nanoparticles Encapsulated with LL37 and Serpin A1 Promotes Wound Healing and Synergistically Enhances Antibacterial Activity.
Miral Fumakia (2016)
Global Antimicrobial Resistance Surveillance System (GLASS) - The detection and reporting of colistin resistance
V. Bortolaia (2018)
10.1128/AAC.02590-14
Bordetella pertussis Lipid A Glucosamine Modification Confers Resistance to Cationic Antimicrobial Peptides and Increases Resistance to Outer Membrane Perturbation
N. R. Shah (2014)
10.1128/AAC.00865-13
Unique Structural Modifications Are Present in the Lipopolysaccharide from Colistin-Resistant Strains of Acinetobacter baumannii
M. Pelletier (2013)
10.3390/ijms20030680
Evaluation of the Antimicrobial Activity of Cationic Peptides Loaded in Surface-Modified Nanoliposomes against Foodborne Bacteria
Stefania Cantor (2019)
10.1038/nri1180
Defensins: antimicrobial peptides of innate immunity
T. Ganz (2003)
10.1099/mic.0.081448-0
Poly-γ-glutamic acid: production, properties and applications.
A. Ogunleye (2015)
10.7164/ANTIBIOTICS.32.305
The structures of tridecaptins B and C (studies on antibiotics from the genus Bacillus. XXV).
T. Kato (1979)
10.1371/journal.ppat.1002360
Sap Transporter Mediated Import and Subsequent Degradation of Antimicrobial Peptides in Haemophilus
Catherine L Shelton (2011)
10.4014/JMB.1310.10015
Proteolytic activity of Escherichia coli oligopeptidase B against proline-rich antimicrobial peptides.
M. Mattiuzzo (2014)
10.1039/c5sc04194e
Proteolysis triggers self-assembly and unmasks innate immune function of a human α-defensin peptide† †Electronic supplementary information (ESI) available: Tables of amino acid sequences and characterization of peptides employed in this work, calculated sedimentation coefficients, sedimentation velo
Phoom Chairatana (2016)
10.1016/J.DCI.2006.11.003
Hedistin: A novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor.
A. Tasiemski (2007)
10.1128/JB.186.9.2724-2734.2004
The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation.
X. Wang (2004)
Adaptation of Pseudomonas aeruginosa
S Klein (2009)
Methyl th ioadenos ine /S
N Parveen (2011)
10.2471/blt.20.268573
Tackling antimicrobial resistance in the COVID-19 pandemic
H. Getahun (2020)
10.21775/cimb.008.011
Antimicrobial peptide resistance mechanisms of human bacterial pathogens.
V. Nizet (2006)
10.1099/mic.0.028969-0
Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides.
C. Kooi (2009)
10.1021/BI00107A007
Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA.
T. D. Bugg (1991)
10.1016/J.CCLET.2016.10.001
A perspective on general direction and challenges facing antimicrobial peptides
M. Zhu (2017)
10.1016/j.jconrel.2011.08.029
PEG-stabilized lipid disks as carriers for amphiphilic antimicrobial peptides.
M. Zetterberg (2011)
10.1093/nar/gkv1051
CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides
F. H. Waghu (2016)
10.1177/09680519010070011001
Bacterial modification of LPS and resistance to antimicrobial peptides
J. S. Gunn (2001)
10.1038/nrmicro2349
Structure-based discovery of antibacterial drugs
K. Simmons (2010)
10.1074/jbc.M600435200
Expression Cloning and Periplasmic Orientation of the Francisella novicida Lipid A 4′-Phosphatase LpxF*
X. Wang (2006)
10.1128/AAC.49.6.2412-2420.2005
Effects of Acyl versus Aminoacyl Conjugation on the Properties of Antimicrobial Peptides
I. Radzishevsky (2005)
The Alzheimer's Disease- Associated Amyloid \(\beta\)- Protein Is an Antimicrobial Peptide
S. Soscia (2010)
Self-assembly of cationic
L Jiang (2015)
Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump and is erythromycin inducible
KD Ambrose (2005)
10.1517/13543784.11.2.309
Antimicrobial peptides: therapeutic potential for the treatment of Candida infections
R. Danesi (2002)
The antibiotic resistance crisis: part 2: management strategies and new agents.
C. Ventola (2015)
10.1016/j.febslet.2010.03.004
Functional interaction of human neutrophil peptide‐1 with the cell wall precursor lipid II
Erik P. H. de Leeuw (2010)
10.1016/J.BBAMEM.2006.03.030
LL-37, the only human member of the cathelicidin family of antimicrobial peptides.
Ulrich H. N. Dürr (2006)
10.1016/j.jcis.2017.07.021
Nano-structured antimicrobial surfaces: From nature to synthetic analogues.
A. Elbourne (2017)
10.1016/S0014-5793(97)00055-0
Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides
M. Dathe (1997)
10.1128/AAC.00680-10
Carotenoid-Related Alteration of Cell Membrane Fluidity Impacts Staphylococcus aureus Susceptibility to Host Defense Peptides
N. Mishra (2010)
10.1016/j.chembiol.2010.08.001
Adding the lipo to lipopeptides: do more with less.
Y. Chooi (2010)
10.1002/ADFM.201505188
Enzyme-Catalyzed Formation of Supramolecular Hydrogels as Promising Vaccine Adjuvants
H. Wang (2016)
10.1021/ja102167m
Photocontrolled compound release system using caged antimicrobial peptide.
S. Mizukami (2010)
10.1128/IAI.68.6.3419-3425.2000
The Response Regulator PhoP Is Important for Survival under Conditions of Macrophage-Induced Stress and Virulence in Yersinia pestis
P. Oyston (2000)
10.1080/0892701031000072190
The Biofilm Matrix
D. Allison (2003)
10.1128/MMBR.59.1.143-169.1995
Phylogenetic identification and in situ detection of individual microbial cells without cultivation.
R. Amann (1995)
10.1021/IE0340995
Design of peptide analogues with improved activity using a novel de novo protein design approach
J. L. Klepeis (2004)
10.1098/rsfs.2016.0153
What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?
Ernest Y Lee (2017)
10.1139/O79-054
Phospholipids of the differentiating bacterium Caulobacter crescentus.
D. E. Jones (1979)
10.1159/000181015
Degradation of Human α- and β-Defensins by Culture Supernatants of Porphyromonas gingivalis Strain 381
M. D. Carlisle (2008)
10.1101/cshperspect.a027037
Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance.
S. Schwarz (2016)
10.1177/000306518903700411
On Structures
A. Applegarth (1989)
10.1074/jbc.C400485200
α2-Macroglobulin-Proteinase Complexes Protect Streptococcus pyogenes from Killing by the Antimicrobial Peptide LL-37*
P. Nyberg (2004)
10.1111/1751-7915.12388
Antibiotic drug discovery
W. Wohlleben (2016)
10.1016/J.FOODCONT.2011.09.025
Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity
P. Prombutara (2012)
10.1093/nar/gkx319
antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification
K. Blin (2017)
Tridecaptin-inspired antimicrobial peptides with activity agains t mul t idrug- res is tant Gram-nega t ive bacter
RD Ballantine (2019)
Biofilms: survival mechanisms
JW Costerton (2002)
Feasibility study exploring the potential
GH De Zoysa (2017)
Amexanthomycins A-J, pentangular
X Li (2018)
10.1021/acsami.9b09583
Self-Assembled Peptide Nanofibers Display Natural Antimicrobial Peptides to Selectively Kill Bacteria without Compromising Cytocompatibility.
Weike Chen (2019)
10.1691/PH.2009.8373
Topical administration of cyclosporin A in a solid lipid nanoparticle formulation.
S. Kim (2009)
10.3389/fmicb.2013.00021
Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa
S. Lewenza (2013)
10.1016/j.jconrel.2015.04.028
Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections.
Aida Baelo (2015)
10.1128/AAC.02218-12
Rational Design of Engineered Cationic Antimicrobial Peptides Consisting Exclusively of Arginine and Tryptophan, and Their Activity against Multidrug-Resistant Pathogens
B. Deslouches (2013)
10.1016/S0378-5173(00)00361-6
Studies on the cyclosporin A loaded stearic acid nanoparticles.
Q. Zhang (2000)
10.2174/138920109787048616
Lantibiotics: mode of action, biosynthesis and bioengineering.
G. Bierbaum (2009)
10.1111/mmi.13269
Protein aggregation as an antibiotic design strategy
Natalia G Bednarska (2016)
10.1021/jm501084q
Antimicrobial peptides with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides.
Gayan Heruka De Zoysa (2015)
10.1371/journal.ppat.1000660
The Bacterial Defensin Resistance Protein MprF Consists of Separable Domains for Lipid Lysinylation and Antimicrobial Peptide Repulsion
C. Ernst (2009)
10.1016/0005-2736(73)90143-0
The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy.
A. Verkleij (1973)
10.29252/IJMR-050305
Molecular Mechanisms of Resistance to Conventional Antibiotics in Bacteria
S. Malmir (2018)
10.3390/antibiotics8020045
Antibiotic Discovery: Where Have We Come from, Where Do We Go?
Bernardo Ribeiro da Cunha (2019)
10.1016/j.cell.2005.05.030
Recognition of Antimicrobial Peptides by a Bacterial Sensor Kinase
Martin W. Bader (2005)
10.1021/acs.jpclett.6b01622
Antimicrobial Peptide-Driven Colloidal Transformations in Liquid-Crystalline Nanocarriers.
M. Gontsarik (2016)
Divalent metal ion triggered
SomA (2009)
Quorum sensing signal-response systems
K Papenfort (2016)
Fuente-Nunez C et al (2015) D-enantiomeric peptides that eradicate
de la (2015)
10.1084/JEM.193.9.1067
Staphylococcus aureus Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine
A. Peschel (2001)
10.1128/AEM.01754-09
Use of Ichip for High-Throughput In Situ Cultivation of “Uncultivable” Microbial Species
D. Nichols (2010)
10.1128/IAI.72.9.5159-5167.2004
Proteus mirabilis ZapA Metalloprotease Degrades a Broad Spectrum of Substrates, Including Antimicrobial Peptides
R. Belas (2004)
10.1007/s00249-007-0227-2
Effect of divalent cations on the structure of the antibiotic daptomycin
S. W. Ho (2007)
10.3389/fmicb.2017.01390
Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities
Alejandra L. Ibáñez de Aldecoa (2017)
10.1093/jac/dkq217
The 2009 Garrod lecture: the evolution of antimicrobial resistance: a Darwinian perspective.
R. Sykes (2010)
10.3389/fimmu.2018.01704
Inhibition of Lipopolysaccharide- and Lipoprotein-Induced Inflammation by Antitoxin Peptide Pep19-2.5
L. Heinbockel (2018)
10.1021/ja200079a
Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization.
N. Schmidt (2011)
10.1007/s00253-015-6375-x
Antimicrobial peptides: an alternative for innovative medicines?
João Pinto da Costa (2015)
10.1128/AAC.05054-11
GraXSR Proteins Interact with the VraFG ABC Transporter To Form a Five-Component System Required for Cationic Antimicrobial Peptide Sensing and Resistance in Staphylococcus aureus
Mélanie Falord (2011)
10.1371/journal.ppat.1000213
Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms
H. Mulcahy (2008)
10.1128/IAI.01620-07
Vibrio cholerae RND Family Efflux Systems Are Required for Antimicrobial Resistance, Optimal Virulence Factor Production, and Colonization of the Infant Mouse Small Intestine
X. Bina (2008)
10.1128/mBio.02279-18
Physical Determinants of Amyloid Assembly in Biofilm Formation
Maria Andreasen (2019)
10.1128/IAI.00751-12
Phosphoethanolamine Residues on the Lipid A Moiety of Neisseria gonorrhoeae Lipooligosaccharide Modulate Binding of Complement Inhibitors and Resistance to Complement Killing
L. Lewis (2012)
10.1159/000203645
M1 Protein Allows Group A Streptococcal Survival in Phagocyte Extracellular Traps through Cathelicidin Inhibition
Xavier Lauth (2009)
10.1016/S0958-6946(02)00194-2
Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation
R. Laridi (2003)
10.1016/J.LWT.2017.08.072
Liposome encapsulation of anionic and cationic whey peptides: Influence of peptide net charge on properties of the nanovesicles
A. Mohan (2018)
10.1039/C6RA13658C
Exploring the structural relationship between encapsulated antimicrobial peptides and the bilayer membrane mimetic lipidic cubic phase: studies with gramicidin A′
Thomas G Meikle (2016)
Self-assembly of peptide amphi
H Cui (2010)
Klebsiella pneumoniae AcrAB
E Padilla (2010)
GCL (2019a) Modulation of toll-like receptor
EY 204–213 Lee (2019)
Amidation. In: Reference module in biomedical sciences
D Kumar (2014)
The nontypeable Haemophilus influenzae Sap transporter provides a mechanism of antimicrobial peptide resistance and SapD-dependent potassium
KM Mason (2006)
PhytAMP: a database dedicated to plant antimicrobial peptides
R Hammami (2008)
WHO (2020c) Target product profiles for needed antibacterial agents: enteric fever, gonorrhea, neonatal sepsis, urinary tract infections and meeting report
10.1021/bi9630826
The concentration-dependent membrane activity of cecropin A
Silvestro (1999)
10.1021/cb500199h
Automated Genome Mining of Ribosomal Peptide Natural Products
H. Mohimani (2014)
10.3389/fchem.2017.00103
Dual Coating of Liposomes as Encapsulating Matrix of Antimicrobial Peptides: Development and Characterization
Ahmed I Gomaa (2017)
10.1046/j.1365-2958.1998.00757.x
PmrA–PmrB‐regulated genes necessary for 4‐aminoarabinose lipid A modification and polymyxin resistance
J. S. Gunn (1998)
10.1093/JAC/18.5.557
Polymyxin B and polymyxin B nonapeptide alter cytoplasmic membrane permeability in Escherichia coli.
R. Dixon (1986)
10.1128/AAC.01756-09
Human Antimicrobial Peptide LL-37 Induces MefE/Mel-Mediated Macrolide Resistance in Streptococcus pneumoniae
Dorothea Zähner (2010)
10.1128/JB.00510-13
D-alanine modification of a protease-susceptible outer membrane component by the Bordetella pertussis dra locus promotes resistance to antimicrobial peptides and polymorphonuclear leukocyte-mediated killing.
Neetu Kumra Taneja (2013)
10.1046/j.1462-5822.2000.00065.x
The regulatory protein PhoP controls susceptibility to the host inflammatory response in Shigella flexneri
J. Moss (2000)
10.1016/j.jcis.2020.11.124
Analysis of the structure, loading and activity of six antimicrobial peptides encapsulated in cubic phase lipid nanoparticles.
Thomas G Meikle (2020)
10.1021/JA004351P
Self-association and membrane-binding behavior of melittins containing trifluoroleucine.
A. Niemz (2001)
10.1016/j.ejps.2017.05.063
Antimicrobial activity of polymyxin‐loaded solid lipid nanoparticles (PLX‐SLN): Characterization of physicochemical properties and in vitro efficacy
P. Severino (2017)
10.1007/s12275-019-8548-2
Two novel synthetic peptides inhibit quorum sensing-dependent biofilm formation and some virulence factors in Pseudomonas aeruginosa PAO1
M. Taha (2019)
10.1039/B416648P
Natural products to drugs: daptomycin and related lipopeptide antibiotics.
R. Baltz (2005)
10.1016/j.bbamem.2015.03.007
Increased membrane surface positive charge and altered membrane fluidity leads to cationic antimicrobial peptide resistance in Enterococcus faecalis.
Rashmi Kumariya (2015)
10.1016/S0966-842X(00)01823-0
The role of cationic antimicrobial peptides in innate host defences.
R. Hancock (2000)
10.1038/nrmicro.2016.89
Quorum sensing signal–response systems in Gram-negative bacteria
Kai Papenfort (2016)
10.1042/BJ20050520
Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide.
A. Malina (2005)
Efficacy of disinfectants against biofilm cells of methicillin-resistant Staphylococcus aureus.
S. Oie (1996)
10.1016/S1473-3099(20)30327-3
The value of antimicrobial peptides in the age of resistance.
M. Magana (2020)
10.3109/08982104.2015.1063648
Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms
M. Sugano (2016)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar