Online citations, reference lists, and bibliographies.
← Back to Search

Kinetic Studies Of The Electrolytic Reduction Of Carbon Dioxide On The Mercury Electrode

W. Paik, T. Andersen, H. Eyring
Published 1969 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Abstract The reduction of CO2 to HCOOH has been studied for the Hg electrode in neutral and acidic aqueous solutions in the potential range between −0.8 and −1.9 V(sce). In the neutral pH range all the current is consumed in the production of formic acid, while in acid solutions both HCOOH and H2 are produced. Steady-state polarization curves, cathodic galvanostatic charging curves. current-efficiency measurements, reaction orders with respect to CO2 partial pressure, and double-layer variation have been used to determine possible reaction pathways. In neutral solutions the mechanism may be described by a direct reduction of CO2 in which two consecutive charge-transfer steps occur. In acidic solutions the above process occurs in parallel with the reduction of H3O+ ions. The H atoms formed react in a branching mechanism either with H3 O+ ions and electrons to yield H2, or with CO2 to yield eventually HCOOH.
This paper references
10.1002/CBER.19040370358
Ueber elektrolytische Reduction der Kohlensäure
A. Coehn (1904)
10.1021/JA01238A513
POLAROGRAPHIC REDUCTION OF CARBON DIOXIDE
P. V. Rysselberghe (1944)
10.1039/TF9595500156
Influence of cation adsorption on the kinetics of electrode processes
A. Frumkin (1959)
10.1021/JA01173A007
Investigations on the Mechanism of Hydrogen Overvoltage. The Salt Effect
Andre J. de. Bethune (1949)
10.1149/1.2424132
Interaction of carbon dioxide with hydrogen chemisorbed on a platinum electrode. Interim report
B. J. Piersma (1966)
10.1016/0013-4686(67)80036-7
On the nature of reduced carbon dioxide
M. Breiter (1967)
10.1021/AC60022A044
Removal of Oxygen from Gas Streams
Louis Meites (1948)
10.1021/JA01214A053
Polarographic reduction of carbon dioxide; description and interpretation of the waves.
P. Van Rysselberghe (1946)
10.1051/JCP/195249S2C070
The mechanism of hydrogen evolution at a mercury cathode in alkaline solution
J. O. Bockris (1952)
10.1002/CBER.19140470137
Über die elektrolytische Reduktion von unter Druck gelöstem Kohlendioxyd und Kohlenoxyd
F. Fischer (1914)
10.1080/00268976100100181
Electron spin resonance and structure of the CO-2radical ion
D. W. Ovenall (1961)
10.1021/J100891A006
Formation of CO2 Radical Ions When CO2 Is Adsorbed on Irradiated Magnesium Oxide
J. P. Jayne (1965)
10.1016/0022-0728(65)80060-2
Voltammetric determination of carbon dioxide using dimethylsulfoxide as a solvent
J. Roberts (1965)
10.1063/1.1740178
Reduction of Carbon Dioxide on Mercury Cathodes
Truman E. Teeter (1954)
10.1139/CJR31-062
AN INVESTIGATION OF THE EQUILIBRIA EXISTING IN GAS-WATER SYSTEMS FORMING ELECTROLYTES
O. Morgan (1931)
10.1016/0013-4686(63)80054-7
Electrochemical reduction of CO2 on platinum electrodes in acid solutions
J. Giner (1963)
10.1021/JA01214A052
Polarographic Reduction of Carbon Dioxide. II. Polymerization and Adsorption at the Dropping Mercury Cathode1
P. V. Rysselberghe (1946)
10.1002/CBER.19050380494
Zur elektrolytischen Reduction der Kohlensäure
R. Ehrenfeld. (1905)
10.1515/zpch-1933-16411
Wasserstoffüberspannung und Struktur der Doppelschicht
A. Frumkin (1933)



This paper is referenced by
10.1007/978-3-642-78677-8_3
Cathodic Organic Reactions
D. Kyriacou (1994)
Electrochemical reduction of CO2 to methanol
Minh Tuyen Hoang Le (2011)
10.1246/BCSJ.68.1889
Kinetics of Electrochemical Reduction of Carbon Dioxide on a Gold Electrode in Phosphate Buffer Solutions
H. Noda (1995)
10.1016/j.electacta.2020.136840
Interfacial engineering of bismuth with reduced graphene oxide hybrid for improving CO2 electroreduction performance
X. Jiang (2020)
10.1039/b804323j
Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels.
Eric E Benson (2009)
10.1002/AENM.201502231
Overpotentials and Faraday Efficiencies in CO2 Electrocatalysis–the Impact of 1‐Ethyl‐3‐Methylimidazolium Trifluoromethanesulfonate
S. Neubauer (2016)
10.1016/0022-0728(86)80157-7
A study of the mechanism for the electrocatalysis of carbon dioxide reduction by nickel and cobalt square planar complexes in solution
D. Pearce (1986)
10.1002/ANGE.201612214
Nanostrukturierte Materialien für die elektrokatalytische CO2-Reduktion und ihre Reaktionsmechanismen
L. Zhang (2017)
10.1021/jacs.7b06765
Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide.
Joaquin Resasco (2017)
10.1016/0254-0584(89)90001-1
On the photoelectrocatalytic reduction of carbon dioxide
J. Bockris (1989)
10.1016/0368-1874(75)85167-7
Raman spectroscopic investigation of silver electrodes
A. McQuillan (1975)
10.1016/0165-1633(83)90007-2
Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-Gallium phosphide and p-Gallium arsenide semiconductor electrodes
B. Aurian‐Blajeni (1983)
10.1016/0022-0728(88)80355-3
Effects of electrolytes on the photoelectrochemical reduction of carbon dioxide at illuminated p-type cadmium telluride and p-type indium phosphide electrodes in aqueous solutions
H. Yoneyama (1988)
10.1016/J.CHEMPR.2018.08.019
Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction
C. Chen (2018)
10.1016/J.ELECTACTA.2012.05.118
Acceleration of the reduction of carbon dioxide in the presence of multivalent cations
A. Schizodimou (2012)
10.1016/J.ELECTACTA.2015.01.209
Tinned graphite felt cathodes for scale-up of electrochemical reduction of aqueous CO2
P. Bumroongsakulsawat (2015)
10.1016/J.CEJ.2019.01.045
Beyond the catalyst: How electrode and reactor design determine the product spectrum during electrochemical CO2 reduction
Jan-Bernd Vennekötter (2019)
10.1016/J.JPOWSOUR.2013.12.063
Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode
Weixin Lv (2014)
10.1002/CELC.201701100
Understanding the Heterogeneous Electrocatalytic Reduction of Carbon Dioxide on Oxide‐Derived Catalysts
James E. Pander (2018)
10.1201/B20177-4
Electrode Kinetics of CO Electroreduction
Jinli Qiao (2016)
10.1016/S0167-2991(98)80731-3
Electrochemical reduction of CO2 at metallic electrodes
J. Augustynski (1998)
10.1039/C1SC00277E
A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes
K. J. P. Schouten (2011)
10.1016/J.JCAT.2018.06.019
Polyethylene glycol induced reconstructing Bi nanoparticle size for stabilized CO2 electroreduction to formate
X. Zhang (2018)
ELECTROCHEMICAL REDUCTION OF CO2 TO METHANOL
A. Thesis (2011)
10.1080/00908319508946098
Effect of temperature on electrochemical reduction of high-pressure CO2 with In, Sn, and Pb electrodes
T. Mizuno (1995)
10.1016/J.APCATB.2017.06.032
Enhancing CO2 electrolysis to formate on facilely synthesized Bi catalysts at low overpotential
Xia Zhang (2017)
10.1016/J.JELECHEM.2016.12.046
Electrochemical reduction of CO2 into CO in N-methyl pyrrolidone/tetrabutylammonium perchlorate in two-compartment electrolysis cell
Q. Li (2017)
10.1007/978-1-4684-3003-5_5
Mechanisms of Stepwise Electrode Processes on Amalgams
V. V. Losev (1972)
10.1016/J.SCITOTENV.2019.02.114
CO2 capture and sequestration in stable Ca-oxalate, via Ca-ascorbate promoted green reaction.
L. Pastero (2019)
Application des dérivés métalliques des polyoxométallates pour la catalyse d'électroréduction de CO2
Marcelo Girardi (2016)
10.1016/0022-0728(94)03589-U
Photocurrent kinetics at the electron emission from metal into electrolyte solution. X: Discharge of short-lived intermediate species
A. Benderskii (1995)
10.1007/BF00752844
Fundamental physical properties and structure of carbon dioxide and its derivatives
I. Stankevich (1979)
See more
Semantic Scholar Logo Some data provided by SemanticScholar