Online citations, reference lists, and bibliographies.
← Back to Search

Abschätzung Der Porenstruktur Poröser Elektroden Aus Impedanzmessungen

H. Keiser, K. Beccu, M. Gutjahr
Published 1976 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Zusammenfassung Die Frequenzabhangigkeit der Impedanz wurde fur verschiedene Geometrien einer einzelnen Pore untersucht und die Ergebnisse auf porose Elektroden ubertragen. Aus der Ortskurve der Impedanz und durch Vergleich mit den an elektrischen Modellen berechneten Werten kann die mittlere Porenstruktur der Elektrode abgeschatzt werden.
This paper references



This paper is referenced by
10.1007/s11665-021-05826-w
Investigation of the Effect of pH on Stress Corrosion Cracking of API 5L X65 Steel by Impedance Spectroscopy and Slow Strain Rate Tensile Test
S. Hassanzadeh (2021)
10.1039/d1cp01491a
Nanoporous gold electrodes modified with self-assembled monolayers for electrochemical control of the surface charge.
E. Hengge (2021)
10.1134/S2070205121030126
Impedance Studies on Stress Corrosion Cracking Behavior of Steel Pipeline in NS4 Solution under SSRT Test Condition
M. Ghobadi (2021)
10.1002/ADMI.202002095
Influence of Wettability on the Impedance of Ion Transport Through Mesoporous Silica Films
M. Ochs (2021)
10.1016/J.JALLCOM.2021.160399
Microstructure and corrosion study of Fe-based bulk metallic glass obtained by spark plasma sintering
L. Zarazúa-Villalobos (2021)
10.1016/J.ELECTACTA.2021.137917
Impedance characterization of biocompatible hydrogel suitable for biomimetic lipid membrane applications
Agnieszka Mech-Dorosz (2021)
10.3390/PR9040688
Modelling Methods and Validation Techniques for CFD Simulations of PEM Fuel Cells
A. d’Adamo (2021)
10.1149/1945-7111/ABE56B
Four-Dimensional Identical-Location X-ray Imaging of Fuel Cell Degradation during Start-Up/Shut-Down Cycling
J. Stoll (2021)
In-Situ Tools Used in Vanadium Redox Flow Battery Research—Review
Purna C. Ghimire (2021)
Hydrogen Bubble Templating of Fractal Ni catalyst for Water Oxidation
M. Hao (2020)
10.1016/j.electacta.2020.136534
Simulation of the diffusional impedance and application to the characterization of electrodes with complex microstructures
Hui-Chia Yu (2020)
10.1016/j.est.2020.101583
Pseudo-capacitive behavior of multi-walled carbon nanotubes decorated with nickel and manganese (hydr)oxides nanoparticles
Willian G Nunes (2020)
10.1016/j.ensm.2019.12.015
Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials
Leonardo M. Da Silva (2020)
10.4995/thesis/10251/149379
Incorporación de nanoestructuras de Ag y Pd en electrocatalizadores porosos de Ni y su aplicación en la producción de hidrógeno mediante electrólisis alcalina del agua
Ramiro Orta (2020)
10.1149/1945-7111/abcd49
Dynamic Characteristic Analysis and Visualization of Current–Voltage Distribution in Pores of Lithium-Ion Battery
A. Kono (2020)
10.1016/j.diamond.2020.108145
Anodically treated Ni/reduced graphene oxide electrodeposits as effective low-cost electrocatalysts for hydrogen evolution in alkaline water electrolysis
I. Flis-kabulska (2020)
10.1016/j.est.2020.101249
Study of the aging process of nanostructured porous carbon-based electrodes in electrochemical capacitors filled with aqueous or organic electrolytes
Willian G Nunes (2020)
10.1002/cssc.202000350
Hydrogen evolution reaction by atomic layer deposited MoNx on porous carbon substrates: An in-depth study of the effect of porosity and post-annealing on the activity and stability.
R. Ramesh (2020)
10.1149/1945-7111/abc655
Editors’ Choice—Review—Impedance Response of Porous Electrodes: Theoretical Framework, Physical Models and Applications
Jun-Teng Huang (2020)
10.1016/b978-0-12-819858-2.00005-6
Characterization methods for supercapacitors
M. Scibioh (2020)
10.1038/s41524-020-00386-4
The electrode tortuosity factor: why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead
Tuan-Tu Nguyen (2020)
10.1016/j.corsci.2020.108468
Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800
Morgane Mokhtari (2020)
10.1016/j.jechem.2020.04.068
The impact of having an oxygen-rich microporous surface in carbon electrodes for high-power aqueous supercapacitors
S. Herou (2020)
Active strain-sensing with a nanoporous-metal hybrid material
C. Kuß (2019)
10.1080/14328917.2018.1533268
The influencing role of oxophilicity and surface area of the catalyst for electrochemical methanol oxidation reaction: a case study
S. Siwal (2019)
10.1016/J.IJHYDENE.2019.05.183
Mechanism and kinetics of the hydrogen evolution reaction
A. Lasia (2019)
10.3390/nano9040608
Mesopore-Rich Activated Carbons for Electrical Double-Layer Capacitors by Optimal Activation Condition
Hyemin Lee (2019)
10.1134/S1023193519080044
Electrochemical Parameters of Supercapacitors on a Neutral Aqueous Electrolyte with Various Electrode Materials
A. G. Berezhnaya (2019)
10.1016/J.ELECTACTA.2019.05.119
Experimental verification of pore impedance theory: Drilled graphite electrodes with gradually more complex pore size distribution
Trishank Sharma (2019)
10.1002/ADSU.201800168
Transition Metal Dichalcogenide Anchored in 3D Nickel Framework with Graphene Support for Efficient Electrocatalytic Hydrogen Evolution
R. Narasimman (2019)
10.1016/J.EST.2019.04.012
Multi-walled carbon nanotubes and activated carbon composite material as electrodes for electrochemical capacitors
Rafael Vicentini (2019)
10.1016/J.ENSM.2019.08.007
Niobium pentoxide nanoparticles @ multi-walled carbon nanotubes and activated carbon composite material as electrodes for electrochemical capacitors
Rafael Vicentini (2019)
See more
Semantic Scholar Logo Some data provided by SemanticScholar