Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Interfacial Electron Transfer In Colloidal Spinel Iron Oxide. Conversion Of Fe3O4-γFe2O3 In Aqueous Medium

J. Jolivet, E. Tronc
Published 1988 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The behaviour of colloidal Fe3O4 (∼100 A) in weakly acidic medium (pH 2-2.5) has been investigated by potentiometry, X-ray diffraction, and Mossbauer spectroscopy. Complete and exclusive removal of FeII without noticeable particle size effect is reported. Subsequent Fe3O4 → γFe2O3 transformation is suggested to proceed with selective surface leaching of FeII ions reduced by electron core-to-surface transfer. An analogous conversion is experienced in the presence of FeIII in solution, but it is characterized by significant structural disordering in the surface.
This paper references
10.1039/F19848002619
Ion adsorption and electron transfer in spinel-like iron oxide colloids
E. Tronc (1984)
10.1080/01418638208224020
Characterization of iron/oxygen surface reactions by X-ray photoelectron spectroscopy
G. Allen (1982)
10.1021/J100812A002
THE ZERO POINT OF CHARGE OF OXIDES1
G. A. Parks (1962)
10.1051/JPHYSLET:019850046010043700
Magnetic coupling among spinel iron oxide microparticles by Mössbauer spectroscopy
E. Tronc (1985)
10.1016/0021-9797(84)90082-1
Boric acid adsorption on magnetite and zirconium dioxide
M. Blesa (1984)
10.1139/V68-637
Studies of the oxide surfaces at the liquid–solid interface. Part II. Fe oxides
S. M. Ahmed (1968)
10.1071/CH9740461
The oxide-solution interface
J. Perram (1974)
10.1016/0021-9797(83)90370-3
Interfacial properties of zirconium dioxide and magnetite in water
A. E. Regazzoni (1983)
10.1139/V72-263
Adsorption of Co2+ by Oxides from Aqueous Solution
P. H. Tewari (1972)
10.1016/0304-8853(83)90350-5
Magnetic hyperfine splitting in mössbauer spectra of microcrystals
S. Mørup (1983)
10.1016/0021-9797(85)90135-3
Completely reversible oxide/water interfaces
G. Onoda (1985)
10.1016/0025-5408(82)90220-3
Defect spinel structure in iron oxide colloids
E. Tronc (1982)
10.1016/0021-9797(84)90052-3
The influence of temperature on the interface magnetite-aqueous electrolyte solution
M. Blesa (1984)
10.1016/0021-9797(81)90063-1
MULTIPLE-SITE ADSORPTION OF CD, CU, ZN, AND PB ON AMORPHOUS IRON OXYHYDROXIDE
M. Benjamin (1981)
10.1143/JPSJ.50.2777
Surface Magnetic Properties of γ-Fe 2 O 3 by 57 Fe Mössbauer Emission Spectroscopy
A. Ochi (1981)
10.1021/IC00158A002
Heterogeneous electron transfer as a pathway in the dissolution of magnetite in oxalic acid solutions
E. Baumgartner (1983)
10.1016/S0021-9797(78)80009-5
Surface ionization and complexation at the oxide/water interface
J. Davis (1978)
10.1016/0021-9797(83)90152-2
Adsorption of Co2+ ions on spherical magnetite particles
H. Tamura (1983)
10.1103/PHYSREV.187.747
Mössbauer Study of Several Ferrimagnetic Spinels
G. A. Sawatzky (1969)
10.1016/0022-1902(77)80523-X
Mechanism of the low temperature oxidation of synthetic magnetites
P. S. Sidhu (1977)
10.1007/BF02061502
Surface effects on magnetically coupled ”γ-Fe2O3” colloids
E. Tronc (1986)
10.1002/BBPC.19760800413
Considerations on the Kinetics and the Mechanism of the Dissolution of Metal Oxides in Acidic Solutions
N. Valverde (1976)
10.1021/IC00158A003
[PtCl(PEt3)(CH(PPh2S)2)], a novel C,S-bonded chelate with dynamic stereochemistry controlled by a metal-ligand pivot
J. Browning (1983)
10.1016/0368-1874(85)85447-2
Acidic and reductive dissolution of magnetite in aqueous sulfuric acid: site-binding model and experimental results
Vivianne I. E. Bruyère (1985)
10.1039/TF9565201642
The oxidation of magnetite and related spinels. Constitution of gamma ferric oxide
I. David (1956)
10.1021/CR60234A002
The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems
G. A. Parks (1965)
X-Ray diffraction procedures for polycrystalline and amorphous materials
H. P. Klug (1974)
10.1139/V80-279
Kinetics of the magnetite–maghemite–hematite transformation, with special reference to hydrothermal systems
T. Swaddle (1980)
10.1016/0166-6622(85)80027-5
Interaction of alkaline-earth-metal ions with magnetite
D. R. Dixon (1985)
10.1016/0039-6028(66)90066-5
Proton adsorption at the ferric oxide/aqueous solution interface: I. A kinetic study of adsorption
G. Y. Onoda (1966)
10.1016/S0022-0728(68)80002-6
The structure of the electrical double layer on porous surfaces
J. Lyklema (1968)
10.1088/0022-3735/12/11/018
Evaluation of hyperfine parameter distributions from overlapped Mossbauer spectra of amorphous alloys
G. Caer (1979)
The hydrolysis of cations
C. Baes (1976)
10.1039/DT9830000189
Transformation of -FeO(OH) to Fe3O4 by adsorption of iron(II) ion on -FeO(OH)
Y. Tamaura (1983)



This paper is referenced by
10.1021/es901882a
Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(II).
K. Rosso (2010)
10.1021/JP106919A
Soft X-ray Spectroscopy Study of the Electronic Structure of Oxidized and Partially Oxidized Magnetite Nanoparticles
B. Gilbert (2010)
10.1016/j.jclepro.2020.123195
Improving the Performance of Cr (VI) Removal by Electrochemical Process using Microbial Cellulose/Magnetic Nanoparticles Electrode
Neda Seyedi Marghaki (2020)
Réactions redox du plutonium et de l'antimoine avec des minéraux de fers en milieux anoxique
R. Kirsch (2012)
10.1016/0016-7037(96)00213-X
Reduction of aqueous transition metal species on the surfaces of Fe(II) -containing oxides
A. White (1996)
10.1016/j.jcis.2012.06.092
Synthesis and properties of titanomagnetite (Fe(3-x)Ti(x)O4) nanoparticles: a tunable solid-state Fe(II/III) redox system.
C. Pearce (2012)
10.1021/ja4015343
Fe(3-x)Ti(x)O4 nanoparticles as tunable probes of microbial metal oxidation.
J. Liu (2013)
10.1039/C3CE41809J
Mesoporous-structure-tailored hydrothermal synthesis and mechanism of the SrTiO3 mesoporous spheres by controlling the silicate semipermeable membranes with the KOH concentrations
Gang Xu (2014)
10.33915/etd.4568
Selenium Removal by Nano-Magnetite Impregnated Diatomaceous Earth
Isabel Cardona (2010)
10.3379/JMSJMAG.22.S1_273
Magnetic Nanocomposites of Mixed Oxides of Iron and Zinc with a Copolymer of Aniline and Formaldehyde : Synthesis at Room Temperature
R. Mathur (1998)
10.1016/J.GCA.2010.07.024
Mechanisms of iron oxide transformations in hydrothermal systems
Tsubasa Otake (2010)
10.1080/01490450252864280
Influence of Biogenic Fe(II) on Bacterial Crystalline Fe(III) Oxide Reduction
E. Roden (2002)
10.1109/20.280834
Magnetic properties of isolated gamma -Fe/sub 2/O/sub 3/ particles
P. Prené (1993)
10.2138/am.2010.3435
Determination of nanoparticulate magnetite stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review
C. Gorski (2010)
10.1016/J.GCA.2011.10.016
Oxidation pathways for formic acid under low temperature hydrothermal conditions: Implications for the chemical and isotopic evolution of organics on Mars
D. Foustoukos (2012)
10.1016/J.MATCHEMPHYS.2008.07.054
Simple synthesis and magnetic properties of Fe3O4/BaSO4 multi-core/shell particles
J. Li (2009)
10.1016/J.MATCHEMPHYS.2011.01.012
A novel preparation method for γ-Fe2O3 nanoparticles and their characterization
B. Wen (2011)
10.1016/J.COLSURFA.2013.06.012
Layer-by-layer self-assembly of ultrathin multilayer films composed of magnetite/reduced graphene oxide bilayers for supercapacitor application
Wai-Hwa Khoh (2013)
10.1039/B304532N
Iron oxide chemistry. From molecular clusters to extended solid networks.
J. Jolivet (2004)
10.1016/J.COLSURFA.2009.01.041
Kinetics of silicate sorption on magnetite and maghemite: An in situ ATR-FTIR study
X. Yang (2009)
10.1016/J.COLSURFA.2017.01.075
Fabrication and characterization of poly (aniline-co-o-anthranilic acid)/magnetite nanocomposites and their application in wastewater treatment
M. Zoromba (2017)
10.1016/B978-012544461-3/50015-6
Solubility and surface adsorption characteristics of metal oxides
D. Wesolowski (2004)
10.1088/0953-8984/17/13/N01
Comment on ‘Magnetic relaxation phenomena and inter-particle interactions in nanosized γ-Fe2O3 systems’
E. Tronc (2005)
10.1016/J.MATCHEMPHYS.2015.02.022
Correlation between coprecipitation reaction course and magneto-structural properties of iron oxide nanoparticles
I. Smolkova (2015)
10.1093/gji/ggaa394
Humidity related magnetite alteration in an experimental setup
Q. Zhang (2020)
10.1016/J.PCRYSGROW.2008.08.003
Synthesis, properties, and applications of magnetic iron oxide nanoparticles
A. Teja (2009)
Reaction of UVI with Titanium-Substituted Magnetite : In fl uence of Ti on UIV Speciation
Drew E Latta (2013)
10.1016/J.GEODERMA.2008.11.018
Mineralogical and magnetic characterisation of iron titanium oxides in soils developed on two various basaltic rocks under temperate climate
Maryline Soubrand-Colin (2009)
10.3390/nano10091888
Magnetic and Magneto-Optical Oroperties of Iron Oxides Nanoparticles Synthesized under Atmospheric Pressure
A. Spivakov (2020)
10.1016/J.EPSL.2007.02.022
Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions
Tsubasa Otake (2007)
BIO-MEDIATED SYNTHESIS OF MONODISPERSE HEMATITE NANOPARTICLES FROM PYRITE
K. A. Mchibwa (2010)
10.1016/J.MSEB.2006.08.036
Preparation of low-density superparamagnetic microspheres by coating glass microballoons with magnetite nanoparticles
X. Li (2006)
See more
Semantic Scholar Logo Some data provided by SemanticScholar