Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

The Induction Of Gene Activity In Drosophila By Heat Shock

M. Ashburner, J. Bonner
Published 1979 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Michael Ashburner* and J. Jose Bonnert Department of Biochemistry and Biophysics University of California, San Francisco San Francisco, California 94143 During the normal development of the larval salivary gland of Drosophila melanogaster, considerable changes occur in the patterns of puffing activity. These can be seen as changes in the puffs of the gland’s polytene chromosomes, and occur as a con- sequence of changes in the titer of the insect’s growth and moulting hormone, ecdysone (for review see Ash- burner and Richards, 1976). In addition to the changes in gene activity normal to development, there are changes in the activities of a set of genes that occur as a direct consequence of subjecting animals to a wide variety of experimental insults, for example, a brief heat shock. The discovery of the induction of a unique set of puffs by heat shock (Ritossa, 1962) has led the way to an analysis of gene function and structure in Drosophila that is, so far, unique. The cytological facts can be summarized briefly (Ritossa, 1962, 1963, 1964a; Berendes and Holt, 1964; Berendes, Van Breugel and Holt, 1965; van Breugel, 1966; Ashburner, 1970; Ellgaard, 1972; Lewis, Helmsing and Ashburner, 1975). If Drosophila larvae or their excised tissues are subjected to a brief heat shock (for example, 40 min at 37”C, the normal culture temperature being 25”C), puffs are induced at a few specific sites (Figure 1). In D. melanogaster there are nine heat-inducible puffs, (33B, 63C, 64F, 678, 70A. 87A, 87C, 93D and 95D); in D. hydei there are six (32A, 36A, 48BC and 81 B; 31 C and 858 are small and variable in their response). The in vivo induction of the puffs by the heat shock is very rapid; it occurs within 1 min of the temperature increase although the puffs continue to increase in size for some 30-40 min (at 37°C) before regressing. The maximum sizes of the induced puffs are a function of the severity of the temperature shock, at least until lethal temperatures are met (Figure 2). The induction requires RNA, but not protein synthesis. In the ab- sence of protein synthesis, however, the induced puffs fail to regress unless the temperature is returned to normal (puff 48BC of D. hydei is an exception; Leen- ders and Beckers, 1972). Prolonged (for example, more than 1 hr) temperature shock results in addi- tional changes in puffing activity; most remarkable is the fact that all other puffs, puffs active at the time the temperature shock began, regress. It was the discovery that heat shock also results in the induction of the synthesis of a set of polypeptides ’ Permanent
This paper references
10.1016/0014-4827(75)90381-X
A correlation between newly induced gene activity and an enhancement of mitochondrial enzyme activity in the salivary glands of Drosophila.
J. Koninkx (1975)
10.1016/0014-4827(64)90308-8
BEHAVIOUR OF RNA AND DNA SYNTHESIS AT THE PUFF LEVEL IN SALIVARY GLAND CHROMOSOMES OF DROSOPHILA.
F. Ritossa (1964)
10.1016/0092-8674(75)90160-9
Analysis of drosophila mRNA by in situ hybridization: Sequences transcribed in normal and heat shocked cultured cells
A. Spradling (1975)
10.1016/0092-8674(78)90346-X
Two hybrid plasmids with D. melanogaster DNA sequences complementary to mRNA coding for the major heat shock protein
P. Schedl (1978)
10.1016/0014-4827(75)90149-4
Respiratory functions involved in the induction of puffs in Drosophila salivary glands.
J. Behnel (1975)
10.1016/0022-1910(73)90048-6
Respiration of larval salivary glands of Drosophila in relation to the activity of specific genome loci.
H. Leenders (1973)
10.1016/B978-0-12-045450-1.50025-1
TRANSCRIPTION AT THE HEAT-SHOCK LOCI OF DROSOPHILA
B. McCarthy (1978)
10.1101/SQB.1978.042.01.082
The effect of heat shock on gene expression in Drosophila melanogaster.
M. Mirault (1978)
10.1016/0092-8674(78)90275-1
Heat shock and Phenocopy induction in Drosophila
H. Mitchell (1978)
10.1073/PNAS.75.2.759
In vitro transcription of heat-shock-specific RNA from chromatin of Drosophila melanogaster cells.
H. Biessmann (1978)
10.1101/SQB.1974.038.01.069
Structure and function in the genome of Drosophila hydei.
H. D. Berendes (1974)
10.1016/S0022-2836(77)80091-0
Messenger RNA in heat-shocked Drosophila cells.
A. Spradling (1977)
10.1016/0012-1606(77)90165-8
A reversible temperature-induced developmental arrest in Drosophila.
D. Lindsley (1977)
10.1016/0014-4827(64)90147-8
EXPERIMENTAL ACTIVATION OF SPECIFIC LOCI IN POLYTENE CHROMOSOMES OF DROSOPHILA.
Ritossa Fm (1964)
10.1016/0092-8674(78)90240-4
A protein released by DNAase I digestion of drosophila nuclei is preferentially associated with puffs
J. Mayfield (1978)
10.1101/SQB.1978.042.01.085
Distribution patterns of Drosophila nonhistone chromosomal proteins.
S. Elgin (1978)
10.1016/0092-8674(79)90289-7
Physical map of two D. melanogaster DNA segments containing sequences coding for the 70,000 dalton heat shock protein
L. Moran (1979)
10.1042/BJ1520017
Induced transcription-dependent synthesis of mitochondrial reduced nicotinamide-adenine dinucleotide dehydrogenase in Drosophila.
J. Koninkx (1975)
10.1016/0045-6039(76)90028-2
RNA synthesis in the Drosophila melanogaster puffs.
E. Belyaeva (1976)
10.1098/RSTB.1978.0044
Heat shock of Drosophila melanogaster induces the synthesis of new messenger RNAs and proteins.
L. Moran (1978)
10.1016/0022-2836(70)90397-9
Duplicate genes for tyrosine transfer RNA in Escherichia coli.
R. Russell (1970)
10.1016/0092-8674(77)90120-9
Transcription at two heat shock loci in Drosophila
S. Henikoff (1977)
10.1016/0014-4827(72)90278-9
RNA synthesis in Tetrahymena. Temperature-pressure studies.
S. Yuyama (1972)
10.1016/0092-8674(75)90011-2
Effect of heat shock on the synthesis of low molecular weight RNAs in drosophila: Accumulation of a novel form of 5S RNA
G. Rubin (1975)
10.1111/J.1550-7408.1976.TB03849.X
RNA synthesis in division synchronized Tetrahymena: macronuclear and cytoplasmic RNA.
J. Hermolin (1976)
10.1042/BJ1580623
Protein synthesis in salivary glands of Drosophila hydei after experimental gene induction.
J. Koninkx (1976)
10.1016/0092-8674(77)90264-1
Deletions of two heat-activated loci in drosophila melanogaster and their effects on heat-induced protein synthesis
D. Ish-Horowicz (1977)
10.1016/0020-1790(75)90055-4
Studies on the mitochondrial NAD-dependent isocitrate dehydrogenase of Drosophila larvae after induction of gene activity by anaerobiosis
Y. T. Sin (1975)
10.1016/0092-8674(77)90308-7
Distribution patterns of three subfractions of drosophila nonhistone chromosomal proteins: possible correlations with gene activity
L. Silver (1977)
10.1016/0092-8674(78)90345-8
A novel arrangement of tandemly repeated genes at a major heat shock site in D. melanogaster
J. Lis (1978)
10.1016/0022-2836(77)90035-3
Translation in vitro of Drosophila heat-shock messages.
S. McKenzie (1977)
10.1073/PNAS.72.3.1117
Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster.
S. McKenzie (1975)
The Effects of Unequal Crossing over at the Bar Locus in Drosophila.
A. Sturtevant (1925)
10.1016/0045-6039(75)90006-8
Nucleotide metabolism in Drosophila melanogaster salivary glands during temperature and dinitrophenol-induced puffing.
E. G. Ellgaard (1975)
10.1016/0092-8674(78)90313-6
Induction of the Drosophila heat shock response in isolated polytene nuclei
J. L. Compton (1978)
10.1016/0092-8674(78)90053-3
The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts
P. Kelley (1978)
10.1016/0014-4827(77)90007-6
Chromosomal puff induction in salivary glands from Drosophila hydei by arsenite.
J. Vossen (1977)
10.1016/0092-8674(76)90183-5
The effect of heat shock on RNA synthesis in Drosophila tissues
J. Bonner (1976)
10.1016/0014-4827(74)90642-9
Changes in cellular ATP, ADP and AMP levels following treatments affecting cellular respiration and the activity of certain nuclear genes in Drosophila salivary glands.
H. Leenders (1974)
10.1038/258159A0
Induction of puffs in Drosophila salivary gland cells by mitochondrial factor(s)
YIU TONG Sin (1975)
10.1111/J.1432-1033.1978.TB12454.X
Heat-shock peptides in Drosophila hydei and their synthesis in vitro.
P. Sondermeijer (1978)
10.1016/0092-8674(79)90290-3
Genes for the 70,000 dalton heat shock protein in two cloned D. melanogaster DNA segments
S. Artavanis-Tsakonas (1979)
10.1083/JCB.55.2.257
THE EFFECT OF CHANGES IN THE RESPIRATORY METABOLISM UPON GENOME ACTIVITY
H. Leenders (1972)
10.1101/SQB.1978.042.01.084
An in vitro assay for the specific induction and regression of puffs in isolated polytene nuclei of Drosophila melanogaster.
J. L. Compton (1978)
10.1016/0045-6039(73)90010-9
Effects of 2,4-dinitrophenol and dinactin on heat-sensitive and ecdysone-specific puffs of Drosophila salivary gland chromosomes in vitro.
L. Rensing (1973)
10.1073/PNAS.75.3.1480
Association of cyclic GMP with gene expression of polytene chromosomes of Drosophila melanogaster.
W. Spruill (1978)
Drosophila virilis puffs induced by temperature and other environmental factors
I. S. Gubenko (1979)
10.1073/PNAS.72.9.3604
Parallel changes in puffing activity and patterns of protein synthesis in salivary glands of Drosophila.
M. Lewis (1975)
10.1016/0022-2836(77)90069-9
Structure and processing of precursor 5 S RNA in Drosophila melanogaster.
B. Jacq (1977)
10.1073/PNAS.75.11.5613
Sequence organization and transcription at two heat shock loci in Drosophila.
K. Livak (1978)
10.1073/PNAS.74.5.2079
Localization of RNA polymerase in polytene chromosomes of Drosophila melanogaster.
M. Jamrich (1977)
10.1016/0092-8674(79)90031-X
Sequence organization of two recombinant plasmids containing genes for the major heat shock-induced protein of D. melanogaster
E. Craig (1979)



This paper is referenced by
Generation and Analysis of Motor Neuron Disease Models in Zebrafish
Alison N. Lyon (2012)
10.1083/JCB.99.1.20
Identification, developmental regulation, and response to heat shock of two antigenically related forms of a major nuclear envelope protein in Drosophila embryos: application of an improved method for affinity purification of antibodies using polypeptides immobilized on nitrocellulose blots
D. E. Smith (1984)
10.1016/0012-1606(84)90152-0
Phenocritical times in the process of in vitro shoot organogenesis.
M. Christianson (1984)
10.1016/0306-4565(90)90002-Y
Variation in sensitivity to heat shock during conjugational events and macronuclear development in Styloychia mytilus
S. Kaul (1990)
10.1016/B978-0-12-147608-3.50010-0
4 – Transcription in Isolated Nuclei
N. Maclean (1981)
10.1038/285435A0
Chromosomal action of ecdysone
M. Ashburner (1980)
10.1126/SCIENCE.7280681
Trauma-induced protein in rat tissues: a physiological role for a "heat shock" protein?
R. W. Currie (1981)
10.1007/BF00548928
Heat shock translational control in cell-free system
O. Denisenko (2004)
10.1016/0167-4889(89)90216-4
Control by hyperthermia of ornithine decarboxylase in Ehrlich ascites tumor cells.
I. Matsui‐yuasa (1989)
10.1016/S0065-230X(08)60202-X
Transcription activation by viral and cellular oncogenes.
J. Nevins (1986)
10.1002/JCP.1041270310
Interferon pretreatment lowers the threshold for maximal heat‐shock response in mouse cells
M. Morange (1986)
10.1007/BF00266991
The induction of triploidy in Oreochromis aureus by heat shock
J. Don (2004)
10.1007/BF01310987
Macromolecular synthesis at the early stage of herpes simplex virus type 2 (HSV-2) latency in a human neuroblastoma cell line IMR-32: repression of late viral polypeptide synthesis and accumulation of cellular heat-shock proteins
Y. Yura (2005)
10.1111/J.1432-1033.1985.TB08963.X
Regulation of gene expression in Tetrahymena pyriformis under heat-shock and during recovery.
L. Galego (1985)
10.1016/0042-6822(84)90018-7
Synthesis of heat-shock proteins in HeLa cells: inhibition by virus infection.
A. Muñoz (1984)
10.1007/BF00329934
The unusual structure of heat shock locus 2-48B in Drosophila hydei
F. Peters (2004)
10.1111/J.1432-1033.1983.TB07636.X
Free messenger ribonucleoprotein complexes of chicken primary muscle cells following modification of protein synthesis by heat-shock treatment.
J. Bag (1983)
10.1016/0092-8674(82)90443-3
The heat-shock response in xenopus oocytes is controlled at the translational level
M. Bienz (1982)
10.1038/303755A0
Gene expression: Protein contacts for promoter location in eukaryotes
A. Travers (1983)
10.1016/0006-291X(92)90544-U
Proliferation of hematopoietic cells is accompanied by suppressed expression of heat shock protein 70.
W. Zhang (1992)
10.1002/DVG.1020040404
The regulation and function of small heat‐shock protein synthesis
Edward M. Berger (1983)
10.1016/0378-1119(81)90058-5
Molecular cloning of cDNA sequences coding for the major (β-, γ-, δ- and ϵ-) heat-shock polypeptides of HeLa cells
A. C. Cato (1981)
10.1002/MRD.1120100106
Different environmental stresses can activate the expression of a heat shock gene in rabbit blastocysts
John J. Heikkila (1984)
10.1016/0012-1606(82)90390-6
Chromatin-associated heat shock proteins of Dictyostelium.
W. Loomis (1982)
10.1016/S0074-7696(08)61183-3
Gene expression and cell cycle regulation.
S. Hochhauser (1981)
10.1016/S0022-2828(87)80390-5
Effects of ischemia and perfusion temperature on the synthesis of stress-induced (heat shock) proteins in isolated and perfused rat hearts.
R. W. Currie (1987)
10.1007/BF01955297
Heat shock response in the Atlantic sea urchin,Arbacia punctulata
D. Maglott (2005)
10.1002/JCP.1041080216
Cellular responses to stress: Comparison of a family of 71–73‐kilodalton proteins rapidly synthesized in rat tissue slices and canavanine‐treated cells in culture
L. Hightower (1981)
10.1007/BF00292683
Transcription and metabolism of RNA from the Drosophila melanogaster heat shock puff site 93D
J. Lengyel (2004)
10.1016/j.jmb.2010.08.022
Structural analysis of the interactions between hsp70 chaperones and the yeast DNA replication protein Orc4p.
María Moreno-del Álamo (2010)
динаміку розвитку психологічних властивостей (здібностей, пам’яті, уваги, мислення, темпераменту та ін.) і характеристик (стійкості, єдності, активності) особистості. Широко використовується тестування і в освітній галузі. Зокрема, зовнішнє незалежне оцінювання знань випускників загальноосвітніх
ΚΑΙ ΔΙΟΙΚΗΣΗΣ (2003)
10.1128/JVI.01377-09
Role of Nuclear Factor Y in Stress-Induced Activation of the Herpes Simplex Virus Type 1 ICP0 Promoter
A. Kushnir (2009)
See more
Semantic Scholar Logo Some data provided by SemanticScholar