Online citations, reference lists, and bibliographies.
← Back to Search

Resistance To Cadmium, Cobalt, Zinc, And Nickel In Microbes.

D. Nies
Published 1992 · Biology, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
The divalent cations of cobalt, zinc, and nickel are essential nutrients for bacteria, required as trace elements at nanomolar concentrations. However, at micro- or millimolar concentrations, Co2+, Zn2+, and Ni2+ (and "bad ions" without nutritional roles such as Cd2+) are toxic. These cations are transported into the cell by constitutively expressed divalent cation uptake systems of broad specificity, i.e., basically Mg2+ transport systems. Therefore, in case of a heavy metal stress, uptake of the toxic ions cannot be reduced by a simple down-regulation of the transport activity. As a response to the resulting metal toxicity, metal resistance determinants evolved which are mostly plasmid-encoded in bacteria. In contrast to that of the cation Hg2+, chemical reduction of Co2+, Zn2+, Ni2+, and Cd2+ by the cell is not possible or sensible. Therefore, other than mutations limiting the ion range of the uptake system, only two basic mechanisms of resistance to these ions are possible (and were developed by evolution): intracellular complexation of the toxic metal ion is mainly used in eucaryotes; the cadmium-binding components are phytochelatins in plant and yeast cells and metallothioneins in animals, plants, and yeasts. In contrast, reduced accumulation based on an active efflux of the cation is the primary mechanism developed in procaryotes and perhaps in Saccharomyces cerevisiae. All bacterial cation efflux systems characterized to date are plasmid-encoded and inducible but differ in energy-coupling and in the number and types of proteins involved in metal transport and in regulation. In the gram-positive multiple-metal-resistant bacterium Staphylococcus aureus, Cd2+ (and probably Zn2+) efflux is catalyzed by the membrane-bound CadA protein, a P-type ATPase. However, a second protein (CadC) is required for full resistance and a third one (CadR) is hypothesized for regulation of the resistance determinant. The czc determinant from the gram-negative multiple-metal-resistant bacterium Alcaligenes eutrophus encodes proteins required for Co2+, Zn2+, and Cd2+ efflux (CzcA, CzcB, and CzcC) and regulation of the czc determinant (CzcD). In the current working model CzcA works as a cation-proton antiporter, CzcB as a cation-binding subunit, and CzcC as a modifier protein required to change the substrate specificity of the system from Zn2+ only to Co2+, Zn2+, and Cd2+.
This paper references
10.1128/JB.150.2.973-976.1982
Cadmium and manganese transport in Staphylococcus aureus membrane vesicles.
R. Perry (1982)
10.1128/JB.126.3.1096-1103.1976
Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology.
M. H. Park (1976)
10.1016/0147-619X(82)90029-4
A small cadmium resistance plasmid isolated from Staphylococcus aureus.
N. El Solh (1982)
10.1128/JB.60.4.401-413.1950
Ion antagonisms in microorganisms; interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc, and manganese.
P. H. Abelson (1950)
10.1016/0092-8674(88)90522-3
Zinc fingers: Gilt by association
R. M. Evans (1988)
10.1128/JB.165.1.334-335.1986
Plasmid-determined cadmium resistance in Pseudomonas putida GAM-1 isolated from soil.
H. Horitsu (1986)
Purification and properties of the bacteriophage P2 ogr gene product. A prokaryotic zinc-binding transcriptional activator.
T. C. Lee (1990)
10.1093/OXFORDJOURNALS.JBCHEM.A133627
Cadmium-binding peptide induced in fission yeast, Schizosaccharomyces pombe.
A. Murasugi (1981)
10.1128/JB.171.9.4742-4751.1989
Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci.
S. Hmiel (1989)
10.1128/JB.171.9.4761-4766.1989
Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems.
M. Snavely (1989)
Cloning, nucleotide sequence, and heterologous expression of a high-affinity nickel transport gene from Alcaligenes eutrophus.
T. Eitinger (1991)
10.1073/PNAS.84.19.6619
Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells.
P. Jackson (1987)
10.1073/PNAS.86.18.6838
Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase).
E. Grill (1989)
10.1111/J.1574-6968.1989.TB03386.X
Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes
T. Schmidt (1989)
10.1111/J.1574-6968.1987.TB02089.X
Plasmid pMOL28-mediated inducible nickel resistance in Alcaligenes eutrophus strain CH34
R. Siddiqui (1987)
10.1139/O88-038
The change of cadystin components in Cd-binding peptides from the fission yeast during their induction by cadmium
Yukimasa Hayashi (1988)
10.1073/PNAS.86.10.3544
Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase.
G. Nucifora (1989)
10.1128/JB.112.2.761-772.1972
Genetic studies on plasmid-linked cadmium resistance in Staphylococcus aureus.
K. Smith (1972)
10.1111/J.1432-1033.1984.TB08252.X
Content and localization of FMN, Fe-S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca 1b.
K. Schneider (1984)
10.1016/0968-0004(89)90048-0
Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions.
Sandra Silver (1989)
Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing in a Pseudomonas [proceedings].
M. Mergeay (1978)
10.1128/AEM.56.5.1485-1491.1990
DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals.
L. Diels (1990)
10.1128/JB.147.2.305-312.1981
Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus.
Z. Tynecka (1981)
10.1128/JB.169.4.1398-1402.1987
Nickel uptake in Bradyrhizobium japonicum.
L. Stults (1987)
10.1128/JB.171.3.1340-1345.1989
Genetic determinants of a nickel-specific transport system are part of the plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus.
G. Eberz (1989)
Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules.
J. M. Berg (1990)
10.1016/0922-338X(89)90230-4
Resistance acquisition of Thiobacillus thiooxidans upon cadmium and zinc ion addition and formation of cadmium ion-binding and zinc ion-binding proteins exhibiting metallothionein-like properties
K. Sakamoto (1989)
10.1016/S0006-291X(80)80066-0
Physiological parameters of prokaryotic metallothionein induction.
R. Olafson (1980)
10.1016/0006-291X(88)90555-4
Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides.
N. Mutoh (1988)
10.1016/0014-5793(90)80122-Y
Metallothionein genes from the flowering plant Mimulus guttatus
J. R. de Miranda (1990)
10.1016/0147-619X(79)90010-6
Penicillinase plasmids of Staphylococcus aureus: restriction-deletion maps.
R. Novick (1979)
10.1128/AAC.14.6.856
Cation Transport Alteration Associated with Plasmid-Determined Resistance to Cadmium in Staphylococcus aureus
A. Weiss (1978)
10.1128/AAC.29.4.663
Resistance to mercury and to cadmium in chromosomally resistant Staphylococcus aureus.
W. Witte (1986)
10.1111/J.1574-6968.1988.TB02817.X
Plasmid pMOL28-encoded resistance to nickel is due to specific efflux
C. Sensfuss (1988)
10.1126/science.225.4666.1043
Cadmium-Resistant Pseudomonas putida Synthesizes Novel Cadmium Proteins
D. P. Higham (1984)
10.1016/0968-0004(80)90166-8
Biological role of nickel
R. Thauer (1980)
10.1073/PNAS.86.19.7351
Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus.
D. Nies (1989)
10.1126/SCIENCE.3945804
Crystal structure of Cd,Zn metallothionein.
W. Furey (1986)
10.1042/BJ2510691
Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium.
R. Olafson (1988)
10.1128/JB.170.1.234-238.1988
Energy-dependent transport of nickel by Clostridium pasteurianum.
M. F. Bryson (1988)
10.1146/ANNUREV.PH.50.030188.001331
Site-Directed Mutagenesis and ION-Gradient Driven Active Transport: On the Path of the Proton
Kaback Hr (1988)
10.1016/0020-711x(88)90241-8
Phosphate metabolism and cellular regulation in microorganisms
A. Torriani-Gorini (1987)
10.1042/BJ1320673
Interrelationships in trace-element metabolism in metal toxicities in a cobalt-resistant strain of Neurospora crassa.
G. Venkateswerlu (1973)
10.1128/JB.133.3.1323-1328.1978
Divalent cation transport systems of Rhodopseudomonas capsulata.
P. Jasper (1978)
10.1016/0968-0004(87)90231-3
‘Zinc fingers’: a novel protein motif for nucleic acid recognition
A. Klug (1987)
10.1128/JB.173.23.7643-7649.1991
Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258.
K. P. Yoon (1991)
10.1098/rspb.1990.0130
Prokaryotic metallothionein gene characterization and expression: chromosome crawling by ligation-mediated PCR
N. Robinson (1990)
10.1016/0147-619X(80)90042-6
Penicillinase plasmids of Staphylococcus aureus: structural and evolutionary relationships.
Z. Shalita (1980)
10.1128/JB.162.3.1106-1110.1985
Cadmium-resistant mutant of Bacillus subtilis 168 with reduced cadmium transport.
R. Laddaga (1985)
10.1128/MMBR.51.1.22-42.1987
Nickel utilization by microorganisms.
R. Hausinger (1987)
10.1128/JB.162.3.1100-1105.1985
Cadmium uptake in Escherichia coli K-12.
R. Laddaga (1985)
10.1128/JB.89.4.1015-1019.1965
NICKEL-DEPENDENT CHEMOLITHOTROPHIC GROWTH OF TWO HYDROGENOMONAS STRAINS.
R. Bartha (1965)
10.1128/JB.171.2.896-900.1989
Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus.
D. Nies (1989)
10.1128/JB.170.9.4188-4193.1988
Inducible and constitutive expression of pMOL28-encoded nickel resistance in Alcaligenes eutrophus N9A.
R. Siddiqui (1988)
10.1126/science.156.3778.1114
R Factors Mediate Resistance to Mercury, Nickel, and Cobalt
D. Smith (1967)
10.1016/0304-4165(70)90134-0
The mechanism of acquired resistance to Co2+ and Ni2+ in Gram-positive and Gram-negative bacteria.
M. Webb (1970)
10.1128/JB.147.2.313-319.1981
Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus.
Z. Tynecka (1981)
10.1128/JB.169.10.4865-4868.1987
Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34.
D. Nies (1987)
10.1093/OXFORDJOURNALS.JBCHEM.A134965
Formation of cadmium-binding peptide allomorphs in fission yeast.
A. Murasugi (1984)
10.1111/J.1432-1033.1984.TB07948.X
Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca 1 b.
K. Schneider (1984)
Magnesium transport in Escherichia coli. Inhibition by cobaltous ion.
D. L. Nelson (1971)
Cd-tolerance in plant cells: A comparison of biochemical and molecular properties of tolerant and sensitive cells
P. Jackson (1988)
10.1146/ANNUREV.MI.42.100188.003441
Plasmid-mediated heavy metal resistances.
S. Silver (1988)
10.1128/JB.171.9.5071-5078.1989
Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp.
R. Siddiqui (1989)
10.1128/JB.171.7.4073-4075.1989
Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain.
D. Nies (1989)
10.1016/0006-291X(79)90939-2
Prokaryotic metallothionein: preliminary characterization of a blue-green alga heavy metal-binding protein.
R. Olafson (1979)
10.1128/JB.162.1.328-334.1985
Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals.
M. Mergeay (1985)
10.1128/JB.170.12.5705-5708.1988
Energy-dependent, high-affinity transport of nickel by the acetogen Clostridium thermoaceticum.
L. L. Lundie (1988)
10.1093/OXFORDJOURNALS.PCP.A077306
Cd-Binding Complexes from the Root Tissues of Various Higher Plants Cultivated in Cd2+-Containing Medium
M. Fujita (1987)
10.1128/JB.151.3.1195-1203.1982
Nickel transport in Methanobacterium bryantii.
K. Jarrell (1982)
10.1111/J.1432-1033.1974.TB03581.X
Energy-dependent zinc transport by escherichia coli.
F. Bucheder (1974)
10.1128/JB.95.4.1335-1342.1968
Plasmid-linked resistance to inorganic salts in Staphylococcus aureus.
R. Novick (1968)
10.1093/OXFORDJOURNALS.PCP.A077230
Purification and Characterization of a Cd-Binding Complex from the Root Tissue of Water Hyacinth Cultivated in a Cd2+-Containing Medium
M. Fujita (1986)
10.1016/0304-4165(70)90133-9
Interrelationships between the utilization of magnesium and the uptake of other bivalent cations by bacteria.
M. Webb (1970)
10.1016/0003-9861(86)90615-6
Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrica.
P. Campbell (1986)
Candida glabrata metallothioneins. Cloning and sequence of the genes and characterization of proteins.
R. K. Mehra (1989)
10.1128/JB.171.9.5065-5070.1989
Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus.
A. Nies (1989)
10.1128/JB.171.9.4752-4760.1989
Magnesium transport in Salmonella typhimurium: expression of cloned genes for three distinct Mg2+ transport systems.
M. Snavely (1989)



This paper is referenced by
10.1002/JCTB.1972
Ni(ll) biosorption by Rhizopus arrhizus Env 3: the study of important parameters in biomass biosorption
Arifa Tahir (2008)
Transporte y adhesión en Brucella suis: caracterización de una proteína de la familia TolC en el eflujo de compuestos tóxicos y de tres posibles adhesinas en la colonización del hospedador
Diana M. Posadas (2010)
10.1590/S1517-838220090004000014
Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine
Benjaphorn Prapagdee (2009)
10.1073/PNAS.96.24.13611
Silver-based crystalline nanoparticles, microbially fabricated.
T. Klaus (1999)
10.1073/pnas.161215198
The yeast mutant vps5Δ affected in the recycling of Golgi membrane proteins displays an enhanced vacuolar Mg2+/H+ exchange activity
G. Borrelly (2001)
10.1289/EHP.94102S3297
Antagonistic effect of nickel on the fermentative growth of Escherichia coli K-12 and comparison of nickel and cobalt toxicity on the aerobic and anaerobic growth.
L. Wu (1994)
10.1023/A:1008212614677
Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from a lead-contaminated site
S. Trajanovska (2004)
10.1109/TNB.2009.2017313
Toxicity of CdTe Quantum Dots in Bacterial Strains
E. Dumas (2009)
10.1016/j.ecoenv.2012.04.026
Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides.
B. Duarte (2012)
10.1016/J.SCITOTENV.2006.01.025
Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine.
A. R. Sprocati (2006)
Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation.
S. Clemens (2001)
Développement d'un biocapteur bactérien pour la détection de métaux lourds
Karl Bernhard Riether (2001)
10.1007/s13205-017-0613-0
Analysis of zntA gene in environmental Escherichia coli and additional implications on its role in zinc translocation
Anandhan Vidhyaparkavi (2017)
10.1081/ESE-100104132
THE REMOVAL OF BACTERIA BY MODIFIED NATURAL ZEOLITES
Z. Milán (2001)
10.1016/S0944-5013(00)80004-X
Effects of micronutrients on growth and starch hydrolysis of Thermococcus guaymasensis and Thermococcus aggregans.
F. Canganella (2000)
10.3390/IJERPH200704040009
Biosorptive Removal of Ni(Ii) from Wastewater and Industrial Effluent
P. Pandey (2007)
Studies on heavy metal resistance of bacterial isolates from a former uranium mining area
Götz Haferburg (2007)
10.1590/S1517-83822009000400014
Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine
B. Prapagdee (2009)
10.1007/978-1-4020-8815-5_33
Metals and Metalloids in Photosynthetic Bacteria: Interactions, Resistance and Putative Homeostasis Revealed by Genome Analysis
F. Borsetti (2009)
10.1128/JB.181.8.2385-2393.1999
Transcriptional organization of the czc heavy-metal homeostasis determinant from Alcaligenes eutrophus.
C. Grosse (1999)
10.1289/EHP.5840
Impact of metals on the biodegradation of organic pollutants.
T. Sandrin (2003)
Investigating Antibiotic Resistance In Urban Agricultural Environment Using Phenotypic, Genomic, And Metagenomic Tools
Abdullah Ibn Mafiz (2018)
the expression of the virulence genes psaBCA, pcpA ,a ndprtA
I. Manzoor (2015)
10.1128/AEM.01187-10
Use of Microcalorimetry To Determine the Costs and Benefits to Pseudomonas putida Strain KT2440 of Harboring Cadmium Efflux Genes
S. Gibbons (2010)
10.1099/mic.0.037143-0
Metals, minerals and microbes: geomicrobiology and bioremediation.
G. M. Gadd (2010)
10.1002/0471263397.ENV237
Metal Stressed Environments, Bacteria in
G. Southam (2003)
10.1016/S0960-8524(00)00168-1
Chromate tolerant bacteria isolated from tannery effluent.
T. Verma (2001)
10.1016/J.GEXPLO.2006.08.011
Microbes adapted to acid mine drainage as source for strains active in retention of aluminum or uranium
Götz Haferburg (2007)
10.1016/J.ENZMICTEC.2005.12.009
Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum
A. Lima (2006)
10.1371/journal.pone.0017367
Identification of the Transcriptional Regulator NcrB in the Nickel Resistance Determinant of Leptospirillum ferriphilum UBK03
T. Zhu (2011)
10.1186/s13568-016-0269-x
Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil
Teik Min Chong (2016)
10.1074/jbc.273.33.21393
Identification of a Novel Transcription Regulator from Proteus mirabilis, PMTR, Revealed a Possible Role of YJAI Protein in Balancing Zinc in Escherichia coli *
M. Noll (1998)
See more
Semantic Scholar Logo Some data provided by SemanticScholar