Online citations, reference lists, and bibliographies.
← Back to Search

Pore- And Channel-Forming Peptides And Their Mimetics

Rebeca García-Fandiño, Martín Calvelo, J. Granja
Published 2017 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Membrane channels are transmembrane-spanning structures that have an internal cavity that allow the migration of different ions and molecules. Inspired by the natural systems, chemists have created a variety of synthetic mimicries. Frequently, self-assembling methods were used to prepare the complex structure of these molecular channels. Although initially these synthetic assemblies were based on peptides, later, they were evolved to other structures facilitating the formation of channels. In this article, we review the most relevant strategies used for the preparation of relevant channel- forming architectures.
This paper references
10.1002/chem.201101510
Oligocholate foldamers as carriers for hydrophilic molecules across lipid bilayers.
Shiyong Zhang (2011)
10.1039/c2ob25816a
Formation of higher-order structures of chiral poly(ethynylpyridine)s depending on size, temperature, and saccharide recognition.
H. Abe (2012)
10.1073/pnas.0708254105
Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides
Nathaniel P. Chongsiriwatana (2008)
10.1002/POC.1047
The determination of the ion selectivity of synthetic ion channels and pores in vesicles
N. Sakai (2006)
10.1021/ja310425j
Metal-organic transmembrane nanopores.
M. Boccalon (2012)
10.1039/c3cc45618h
Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis-trans photoisomerization.
T. Liu (2013)
10.1021/la2005166
Translocation of hydrophilic molecules across lipid bilayers by salt-bridged oligocholates.
Hongkwan Cho (2011)
10.1039/A904069B
Towards a redox-active artificial ion channel
C. Hall (1999)
10.1046/J.1397-002X.2000.00823.X
Artificial ion channels formed by a synthetic cyclic peptide.
D. Wang (2001)
10.1002/asia.201000428
Designer nanorings with functional cavities from self-assembling β-sheet peptides.
Il-soo Park (2011)
10.1002/CHEM.200701520
Interface engineering of synthetic pores: towards hypersensitive biosensors.
Federico Mora (2008)
10.1039/B703659K
Large-diameter self-assembled dimers of alpha,gamma-cyclic peptides, with the nanotubular solid-state structure of cyclo-[(l-Leu-D-(Me)N-gamma-Acp)(4)-].4CHCl(2)COOH.
R. J. Brea (2007)
10.1002/anie.200804019
Control of duplex formation and columnar self-assembly with heterogeneous amide/urea macrocycles.
L. Fischer (2009)
10.1002/(SICI)1521-3765(20000515)6:10<1739::AID-CHEM1739>3.0.CO;2-Y
Rigid-rod beta-barrels as lipocalin models: probing confined space by carotenoid encapsulation.
B. Baumeister (2000)
10.1039/C0SM01218A
Self-assembly of amphiphilic peptides
I. Hamley (2011)
10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N
Self-Assembling Organic Nanotubes.
D. T. Bong (2001)
10.1021/ja00393a050
Chiral and functionalized face-discriminated and side-discriminated macrocyclic polyethers. Syntheses and crystal structures
J. P. Behr (1981)
10.1128/AAC.49.8.3302-3310.2005
Systemic Antibacterial Activity of Novel Synthetic Cyclic Peptides
V. Dartois (2005)
10.1016/S1748-0132(08)70041-0
Self-assembling peptide nanotubes
S. Scanlon (2008)
10.1021/acs.accounts.6b00051
"Sticky"-Ends-Guided Creation of Functional Hollow Nanopores for Guest Encapsulation and Water Transport.
Yanping Huo (2016)
10.1038/295526A0
Crystal structure of a polyfunctional macrocyclic K+ complex provides a solid-state model of a K+ channel
Jean-Paul Behr (1982)
10.1039/c3nr03184e
How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes.
L. Lacerda (2013)
10.1039/c1cs15099e
Ionic conductance of synthetic channels: analysis, lessons, and recommendations.
Jonathan K. W. Chui (2012)
10.1039/c0cs00209g
Recent synthetic transport systems.
S. Matile (2011)
10.1039/c3cc44224a
Active ion transporters from readily accessible acyclic octapeptides containing 3-aminobenzoic acid and alanine.
B. P. Benke (2013)
10.1021/ja302292c
Single-molecular artificial transmembrane water channels.
Xiaobo Hu (2012)
10.1039/P29810001411
Conformation and stereodynamics of 2-dialkylamino-1,3-dimethyl-2,3-dihydro-1H-1,3,2-benzodiazaphospholes. An experimental nuclear magnetic resonance, ultraviolet photoelectron, and theoretical MNDO investigation
W. Jennings (1981)
10.1016/j.bmc.2015.02.031
Aminobenzoic acid incorporated octapeptides for cation transport.
B. P. Benke (2015)
10.1021/jo800599w
Saccharide recognition-induced transformation of pyridine-pyridone alternate oligomers from self-dimer to helical complex.
H. Abe (2008)
10.1021/JA002129E
Solvophobically Driven π-Stacking of Phenylene Ethynylene Macrocycles and Oligomers
Shreyasi Lahiri (2000)
10.1021/ol901695m
Controlled self-assembly of electron donor nanotubes.
J. L. Lopez (2009)
10.1002/anie.201106857
Selective artificial transmembrane channels for protons by formation of water wires.
Wen Si (2011)
10.1007/springerreference_33998
Ion Channels of Excitable Membranes
B. Hille (2001)
10.1021/LA047211S
Ionic channel behavior of modified cyclodextrins inserted in lipid membranes.
L. Bacri (2005)
10.1021/JA9735315
Oriented Self-Assembly of Cyclic Peptide Nanotubes in Lipid Membranes
Hui Sun Kim (1998)
10.1021/nl802672u
A linear chain of water molecules accommodated in a macrocyclic nanotube channel.
K. Ono (2009)
10.1016/j.ceb.2011.12.013
A jumbo problem: mapping the structure and functions of the nuclear pore complex.
Javier Fernandez-Martinez (2012)
10.1039/P19930001411
Molecular recognition directed self-assembly of supramolecular cylindrical channel-like architectures from 6,7,9,10,12,13,15,16-octahydro-1,4,7,10,13-pentaoxabenzocyclopentadecen-2-ylmethyl 3,4,5-tris(p-dodecyloxybenzyloxy)benzoate
V. Percec (1993)
10.1021/JA061861W
Columnar self-assembled ureido crown ethers: an example of ion-channel organization in lipid bilayers.
A. Cazacu (2006)
10.1021/acs.jpclett.5b01964
Molecular Dynamics of Membrane-Spanning DNA Channels: Conductance Mechanism, Electro-Osmotic Transport, and Mechanical Gating.
Jejoong Yoo (2015)
10.1021/JA0665747
Rigid oligonaphthalenediimide rods as transmembrane anion-pi slides.
Virginie Gorteau (2006)
10.1002/HLCA.200890190
New Open‐Chain and Cyclic Tetrapeptides, Consisting of α‐, β2‐, and β3‐Amino‐Acid Residues, as Somatostatin Mimics – A Survey
D. Seebach (2008)
10.3762/bjoc.11.222
Supramolecular chemistry: from aromatic foldamers to solution-phase supramolecular organic frameworks
Zhan-Ting Li (2015)
10.1021/JA9727171
Diffusion-Limited Size-Selective Ion Sensing Based on SAM-Supported Peptide Nanotubes
Kianoush Motesharei and (1997)
10.1021/MA801470R
Saccharide-Linked Ethynylpyridine Oligomers: Primary Structures Encode Chiral Helices
H. Abe (2008)
10.1039/b805753m
Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes.
R. J. Brea (2010)
10.1021/ja503376s
Hydrogen-bonded helical hydrazide oligomers and polymer that mimic the ion transport of gramicidin A.
Pengyang Xin (2014)
10.1517/17460441.2015.1076790
An overview of peptide and peptoid foldamers in medicinal chemistry
I. Mándity (2015)
10.1039/B602230H
Peptides of aminoxy acids as foldamers.
X. Li (2006)
10.1021/JA003141+
Electrostatics of cell membrane recognition: structure and activity of neutral and cationic rigid push-pull rods in isoelectric, anionic, and polarized lipid bilayer membranes.
N. Sakai (2001)
10.1021/CR980099G
Resistive-Pulse SensingFrom Microbes to Molecules
Hagan Bayley (2000)
10.1021/ar400061d
Ion channel models based on self-assembling cyclic peptide nanotubes.
J. Montenegro (2013)
10.1021/JA054134U
Regulation of saccharide binding with basic poly(ethynylpyridine)s by H+-induced helix formation.
H. Abe (2005)
10.1002/1521-3773(20010702)40:13<2503::AID-ANIE2503>3.0.CO;2-E
A Synthetic Pore-Mediated Transmembrane Transport of Glutamic Acid.
J. Sánchez‐Quesada (2001)
10.1016/j.bmc.2011.11.036
Formation of ion-selective channel using cyclic tetrapeptides.
Torao Suga (2012)
10.1021/ol501772v
Preorganized aryltriazole foldamers as effective transmembrane transporters for chloride anion.
J. Shang (2014)
10.1002/ANIE.200502436
Wrapping peptide tubes: merging biological self-assembly and polymer synthesis.
Marco A Balbo Block (2005)
10.1021/JA047436P
Hydrogen bonded oligohydrazide foldamers and their recognition for saccharides.
Jun-li Hou (2004)
10.1021/NL304147F
Self-assembled DNA nanopores that span lipid bilayers.
Jonathan R Burns (2013)
10.1039/B610858J
Self-assembly of cyclic homo- and hetero-β-peptides with cis- furanoid sugar amino acid and β-hGly as building blocks
B. Jagannadh (2006)
10.1021/ar8001393
Alpha-aminoxy acids: new possibilities from foldamers to anion receptors and channels.
X. Li (2008)
10.1021/ja312704e
Chiral selective transmembrane transport of amino acids through artificial channels.
L. Chen (2013)
10.1016/S0040-4020(02)01181-X
Synthesis, conformational behaviour, alkali and alkaline-earth metal cation extraction and transport studies of p-tert-butyldihomooxacalix(4)crowns
P. Marcos (2002)
10.1021/acs.nanolett.5b00189
DNA-Tile Structures Induce Ionic Currents through Lipid Membranes.
K. Göpfrich (2015)
10.1039/c1ob06364b
Flexible oligocholate foldamers as membrane transporters and their guest-dependent transport mechanism.
Shiyong Zhang (2012)
10.1126/science.1225624
Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures
M. Langecker (2012)
10.1002/ANIE.199506931
A Non‐Peptidic Ion Channel with K+ Selectivity
Y. Tanaka (1995)
10.1021/ja5077537
Proton gradient-induced water transport mediated by water wires inside narrow aquapores of aquafoldamer molecules.
Huaiqing Zhao (2014)
10.1039/c5cp04200c
Molecular dynamics simulations for designing biomimetic pores based on internally functionalized self-assembling α,γ-peptide nanotubes.
Martín Calvelo (2015)
10.1002/anie.200905591
Consequences of isostructural main-chain modifications for the design of antimicrobial foldamers: helical mimics of host-defense peptides based on a heterogeneous amide/urea backbone.
Paul Claudon (2010)
10.1039/b803553a
Metal-free double helices from abiotic backbones.
Debasish Haldar (2009)
10.1039/B415908J
Calix[4]arene-cholic acid conjugates: a new class of efficient synthetic ionophores.
N. Maulucci (2005)
10.1021/JA051260P
Synthetic ion channels with rigid-rod pi-stack architecture that open in response to charge-transfer complex formation.
P. Talukdar (2005)
10.1016/S0040-4039(00)82119-X
The “chundle” approach to molecular channels synthesis of a macrocycle-based molecular bundle
L. Jullien (1988)
10.1002/CHIN.199720281
Synthetic ion channels.
U. Koert (2004)
10.1038/ncomms3989
Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor
L. Liu (2013)
10.1039/c4sc02380c
Extremely strong tubular stacking of aromatic oligoamide macrocycles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02380c Click here for additional data file.
Mark A. Kline (2015)
10.1021/JA058157K
Dendritic folate rosettes as ion channels in lipid bilayers.
N. Sakai (2006)
10.1246/BCSJ.20090272
Trans-Bilayer Ion Conduction by Proline Containing Cyclic Hexapeptides and Effects of Amino Acid Substitutions on Ion Conducting Properties
J. Taira (2010)
10.1021/acs.jpclett.5b00252
Regulating Ion Transport in Peptide Nanotubes by Tailoring the Nanotube Lumen Chemistry.
L. Ruiz (2015)
10.1021/ar300337f
Conformationally controlled oligocholate membrane transporters: learning through water play.
Y. Zhao (2013)
10.1021/JA0296273
New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes.
M. Amorín (2003)
10.1021/ar400025e
From natural to bioassisted and biomimetic artificial water channel systems.
M. Barboiu (2013)
10.1021/ol9002477
Stabilizing guanosine-sterol ion channels with a carbamate to urea modification in the linker.
L. Ma (2009)
10.1016/S0040-4039(00)85664-6
A,B,D,F-tetrasubstituted β-cyclodextrin as artificial channel compound
I. Tabushi (1982)
10.1021/nn5039433
Bilayer-Spanning DNA Nanopores with Voltage-Switching between Open and Closed State
Astrid Seifert (2015)
10.1021/ar400014r
Synthetic ion transporters that work with anion-π interactions, halogen bonds, and anion-macrodipole interactions.
Andreas Vargas Jentzsch (2013)
Self-assembling α,γ-cyclic peptides that generate cavities with tunable properties
Nuria Rodríguez-Vázquez (2016)
10.1021/JA010761H
Artificial ion channels showing rectified current behavior.
C. Goto (2001)
10.1016/J.BMC.2005.05.051
Antiviral cyclic d,l-α-peptides: Targeting a general biochemical pathway in virus infections
W. Horne (2005)
10.1016/J.MATTOD.2014.10.020
Transport mechanisms in nanopores and nanochannels: Can we mimic nature?
M. Tagliazucchi (2015)
10.1021/JA071961H
A Small synthetic molecule forms chloride channels to mediate chloride transport across cell membranes.
X. Li (2007)
10.1021/JA991133R
Rigid Push−Pull Oligo(p-Phenylene) Rods: Depolarization of Bilayer Membranes with Negative Membrane Potential
Jean-Yves Winum (1999)
10.1021/nn103083t
Subnanometer porous thin films by the co-assembly of nanotube subunits and block copolymers.
Ting Xu (2011)
10.1126/science.1181799
Translocation of Single-Stranded DNA Through Single-Walled Carbon Nanotubes
H. Liu (2010)
10.1039/b907350g
Synthesis and characterization of a redox-active ion channel supporting cation flux in lipid bilayers.
M. Tsikolia (2009)
10.1039/b911247m
Alpha,gamma-cyclic peptide ensembles with a hydroxylated cavity.
César Reiriz (2009)
10.1021/acs.accounts.5b00143
Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.
Wen Si (2015)
10.1039/c6cc01724j
Artificial water channels--incipient innovative developments.
M. Barboiu (2016)
10.1002/asia.201000545
Highly efficient and directional homo- and heterodimeric energy transfer materials based on fluorescently derivatized α,γ-cyclic octapeptides.
Roberto J. Brea (2011)
10.1002/(SICI)1521-3765(19980807)4:8<1367::AID-CHEM1367>3.0.CO;2-B
Peptide Nanotubes and Beyond
J. D. Hartgerink (1998)
10.1016/J.SSI.2009.05.018
Triazole and triazole derivatives as proton transport facilitators in polymer electrolyte membrane fuel cells
R. Subbaraman (2009)
10.1002/IJCH.201400188
Computational Approaches to Understanding the Self-assembly of Peptide-based Nanostructures
T. Tuttle (2015)
10.1002/anie.201103312
Imidazole-quartet water and proton dipolar channels.
Yann Le Duc (2011)
10.1021/ar400030e
Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
B. Gong (2013)
10.1038/nature13817
Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes
J. Geng (2014)
10.1002/anie.201405719
Membrane-Spanning DNA Nanopores with Cytotoxic Effect**
Jonathan R Burns (2014)
10.1021/jacs.5b12698
Persistent Organic Nanopores Amenable to Structural and Functional Tuning.
Xiaoxi Wei (2016)
10.1039/c3cc49543d
Synthesis of antimicrobial cyclodextrins bearing polyarylamino and polyalkylamino groups via click chemistry for bacterial membrane disruption.
H. Yamamura (2014)
10.1038/ncomms3780
Janus cyclic peptide-polymer nanotubes.
Maarten Danial (2013)
10.1002/HLCA.19970800116
Cyclo‐β‐peptides: Structure and tubular stacking of cyclic tetramers of 3‐aminobutanoic acid as determined from powder diffraction data
D. Seebach (1997)
10.1002/CHEM.200601583
A combinatorial approach to the discovery of biocidal six-residue cyclic D,L-alpha-peptides against the bacteria methicillin-resistant Staphylococcus aureus (MRSA) and E. coli and the biofouling algae Ulva linza and Navicula perminuta.
J. T. Fletcher (2007)
10.1016/0304-4157(86)90002-X
How do the polyene macrolide antibiotics affect the cellular membrane properties?
J. Bolard (1986)
10.1016/J.TETLET.2006.10.045
Synthesis of per-2,3-di-O-heptyl-β and γ-cyclodextrins: a new kind of amphiphilic molecules bearing hydrophobic parts
N. Badi (2006)
10.1021/JA981485I
Cylindrical β-Sheet Peptide Assemblies
T. Clark (1998)
10.1155/2013/803579
Hydraphiles: A Rigorously Studied Class of Synthetic Channel Compounds with In Vivo Activity
S. Negin (2013)
10.1529/biophysj.106.102467
Simulations of electrophoretic RNA transport through transmembrane carbon nanotubes.
U. Zimmerli (2008)
10.1021/JA403136H
Correction to “Design and Characterization of 1D Nanotubes and 2D Periodic Arrays Self-Assembled from DNA Multi-Helix Bundles”
T. Wang (2013)
10.1002/bip.22177
Four‐peptide‐nanotube bundle formation by self‐assembling of cyclic tetra‐β‐peptide using g‐quartet motif
Y. Ishihara (2013)
10.1038/nature02770
Self-assembly of amphiphilic dendritic dipeptides into helical pores
V. Percec (2004)
10.1021/JA017497C
Recognition of polarized lipid bilayers by p-oligophenyl ion channels: from push-pull rods to push-pull barrels.
N. Sakai (2002)
10.1016/j.tibs.2007.10.007
New structures help the modeling of toxic amyloidbeta ion channels.
H. Jang (2008)
10.1002/anie.200900584
One-pot formation of large macrocycles with modifiable peripheries and internal cavities.
J. S. Ferguson (2009)
10.1002/CHEM.200601826
Chirality induction and protonation-induced molecular motions in helical molecular strands.
E. Kolomiets (2007)
10.1039/c2cc36729g
Sensing applications of synthetic transport systems.
T. Takeuchi (2013)
10.1021/ja807935y
Efficient kinetic macrocyclization.
W. Feng (2009)
10.1039/b809087d
Palladium(II)-gated ion channels.
C. P. Wilson (2008)
10.1021/ja4013276
Transmembrane halogen-bonding cascades.
Andreas Vargas Jentzsch (2013)
10.1021/ja208548b
Strong aggregation and directional assembly of aromatic oligoamide macrocycles.
Y. Yang (2011)
10.1021/ol300684j
One-pot formation of aromatic tetraurea macrocycles.
Zehui Wu (2012)
Channels, Carriers, and Pumps: An Introduction to Membrane Transport
W. Stein (1990)
10.1016/J.TIBTECH.2004.07.011
Fabrication of molecular materials using peptide construction motifs.
X. Zhao (2004)
10.1080/00032710903518765
Calix[n]arenes as Synthetic Membrane Transporters: A Minireview
L. Mutihac (2010)
10.1039/c5cs00157a
Natural supramolecular protein assemblies.
Bas Pieters (2016)
10.1021/ja103694p
Environmental effects dominate the folding of oligocholates in solution, surfactant micelles, and lipid membranes.
Hongkwan Cho (2010)
10.1021/ja074597v
Polycationic beta-cyclodextrin "click clusters": monodisperse and versatile scaffolds for nucleic acid delivery.
Sathya Srinivasachari (2008)
10.1021/BM060415Y
Columnar Assembly of Cyclic β-Amino Acid Functionalized with Pyranose Rings
F. Fujimura (2006)
10.1002/ADMA.200401849
Peptide-Based Nanotubes and Their Applications in Bionanotechnology.
X. Gao (2005)
10.1007/BF00208866
Na+, K+ and Cl− selectivity of the permeability pathways induced through sterol-containing membrane vesicles by amphotericin B and other polyene antibiotics
S. Hartsel (2004)
10.1039/c0cs00053a
Biomimetic smart nanopores and nanochannels.
X. Hou (2011)
10.1038/nature04586
Folding DNA to create nanoscale shapes and patterns
P. Rothemund (2006)
10.1039/c3cc47071g
Biomimetic artificial ion channels based on beta-cyclodextrin.
Yassine El Ghoul (2013)
10.1126/SCIENCE.1092048
Aligned Multiwalled Carbon Nanotube Membranes
B. Hinds (2004)
10.1039/C3SC00064H
Structure elucidation and control of cyclic peptide-derived nanotube assemblies in solution
R. Chapman (2013)
10.1007/BF01870364
Ionic selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels
G. Eisenman (2005)
10.1039/b902269d
Azacrown-attached meta-ethynylpyridine polymer: saccharide recognition regulated by supramolecular device.
H. Abe (2009)
10.1038/366324A0
Self-assembling organic nanotubes based on a cyclic peptide architecture
M. Ghadiri (1993)
10.1039/c4ob00480a
Cyclodextrin ion channels.
Jonathan K. W. Chui (2014)
10.1039/B005436O
Enhancement of cation transport in synthetic hydraphile channels having covalently-linked headgroups
H. Shabany (2000)
10.1002/(SICI)1521-3773(19990503)38:9<1223::AID-ANIE1223>3.0.CO;2-A
Synthesis and Biological Evaluation of a Cyclo-β-tetrapeptide as a Somatostatin Analogue.
K. Gademann (1999)
10.1038/NMAT1373
Supramolecular barrels from amphiphilic rigid–flexible macrocycles
Won-Young Yang (2005)
10.1021/cr300116k
Aromatic amide foldamers: structures, properties, and functions.
Dan-Wei Zhang (2012)
10.1039/b902455g
Antibacterial cyclic D,L-alpha-glycopeptides.
Leila Motiei (2009)
10.1002/CHEM.200600315
Helix formation in synthetic polymers by hydrogen bonding with native saccharides in protic media.
M. Waki (2006)
10.1021/MA60037A011
Conformational Analysis of Regular Enantiomeric Sequences
P. Santis (1974)
10.1002/anie.200802240
Synthetic ion channel based on metal-organic polyhedra.
Minseon Jung (2008)
10.1002/9781118592403
Peptide Materials: from nanostructures to applications
C. Alemán (2013)
10.1071/C98006
Synthesis of Nanotubule-Forming Cyclic Octapeptides via an Fmoc Strategy
M. Polášková (1998)
10.1021/JA00184A075
Biomimetic ion transport: a functional model of a unimolecular ion channel
V. E. Carmichael (1989)
10.1039/c2cs35172b
Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates.
R. Chapman (2012)
10.1021/acs.jpcb.5b03322
Polarized Water Wires under Confinement in Chiral Channels.
M. Barboiu (2015)
10.1021/acs.langmuir.5b00379
Conformationally switchable water-soluble fluorescent bischolate foldamers as membrane-curvature sensors.
Roshan W. Gunasekara (2015)
10.1021/JO010208I
Transmembrane ion channels constructed of cholic acid derivatives.
Y. Kobuke (2001)
10.1016/S0968-0896(02)00620-X
Complementary characteristics of homologous p-octiphenyl beta-barrels with ion channel and esterase activity.
A. Som (2003)
10.1002/anie.201311249
Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels.
Wen Si (2014)
10.1002/anie.201104966
Ditopic ion transport systems: anion-π interactions and halogen bonds at work.
Andreas Vargas Jentzsch (2011)
10.1016/J.PNSC.2008.01.012
Recent development of peptide self-assembly
X. Zhao (2008)
10.1039/b926162c
Anion-controlled foldamers.
Hemraj Juwarker (2010)
10.1016/J.POLYMER.2013.07.027
Liquid crystalline polyamines containing side dendrons: Toward the building of ion channels based on polyamines
A. Šakalytė (2013)
10.1002/ANIE.199718401
Calix[4]tube: A Tobular Receptor with Remarkable Potassium Ion Selectivity
P. Schmitt (1997)
10.1038/nrmicro1098
Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?
K. Brogden (2005)
10.1021/JA0513584
Thermally gated liposomes.
Wen‐Hua Chen (2005)
10.1021/ar900036b
De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications.
G. Tew (2010)
10.1021/JA0474547
Highly efficient, one-step macrocyclizations assisted by the folding and preorganization of precursor oligomers.
Lihua Yuan (2004)
10.1039/b618320b
Hybrid porous solids: past, present, future.
G. Férey (2008)
10.1021/jacs.5b12057
Length-Dependent Formation of Transmembrane Pores by 310-Helical α-Aminoisobutyric Acid Foldamers
J. Jones (2016)
10.1021/jo801717w
Examination of the structural features that favor the columnar self-assembly of bis-urea macrocycles.
J. Yang (2009)
10.1038/NCHEMBIO876
Foldamers as versatile frameworks for the design and evolution of function.
C. Goodman (2007)
10.1021/jp2098679
Cyclodextrin-scaffolded alamethicin with remarkably efficient membrane permeabilizing properties and membrane current conductance.
Claudia U. Hjørringgaard (2012)
10.1039/A903041G
Self-assembled single-chain oligo(p-phenylene) amphiphiles: reversed micelles, vesicles and gels
V. Sidorov (1999)
10.1007/128_2014_541
Anion transport with halogen bonds.
A. Jentzsch (2015)
BINDING PROPERTIES OF CALIX4-BIS-CROWNS TOWARDS ALKALI CATIONS
F. Arnaud-Neu (1996)
10.1039/C1SM05698K
Peptide nanotubes: molecular organisations, self-assembly mechanisms and applications
C. Valéry (2011)
10.1039/c4cp04547e
Structure, stability and elasticity of DNA nanotubes.
H. Joshi (2015)
10.1002/chem.201502656
Trimodal Control of Ion-Transport Activity on Cyclo-oligo-(1→6)-β-D-glucosamine-Based Artificial Ion-Transport Systems.
Arundhati Roy (2015)
10.1021/JA00115A012
Synthesis, Complexation, and Membrane Transport Studies of 1,3-Alternate Calix[4]arene-crown-6 Conformers: A New Class of Cesium Selective Ionophores
A. Casnati (1995)
10.1002/chem.201403130
Drug conjugation to cyclic peptide-polymer self-assembling nanotubes.
Bianca M. Blunden (2014)
10.1039/C2SC21068A
Transmembrane ion transport by self-assembling α,γ-peptide nanotubes
Rebeca García-Fandiño (2012)
10.1002/cphy.c100071
Voltage-gated proton channels.
T. DeCoursey (2012)
10.1002/anie.200703749
Rigid oligoperylenediimide rods: anion-pi slides with photosynthetic activity.
Alejandro Perez-Velasco (2008)
10.1021/JA053527Q
Poly(choloyl)-based amphiphiles as pore-forming agents: transport-active monomers by design.
Wen‐Hua Chen (2005)
10.1039/c1nr11068c
Charge transport in vertically aligned, self-assembled peptide nanotube junctions.
Mordechay Mizrahi (2012)
10.1021/AR0501267
The chain-length dependence test.
Matthew T. Stone (2006)
10.1038/nchem.2148
Nanotechnology: deadly DNA.
Swati Krishnan (2015)
10.1016/J.MICRON.2007.06.017
Cyclodextrin-based aggregates and characterization by microscopy.
Yifeng He (2008)
10.1021/ja2063082
Processable cyclic peptide nanotubes with tunable interiors.
R. Hourani (2011)
10.1039/P19880000417
Asymmetric syntheses. Part 2. Reduction of ketones with chiral sodium borohydride-lactic acid derivative systems
G. Bianchi (1988)
10.1021/JA0481878
Thermodynamic and kinetic stability of synthetic multifunctional rigid-rod beta-barrel pores: evidence for supramolecular catalysis.
S. Litvinchuk (2004)
10.1021/ja506278z
Hopping-mediated anion transport through a mannitol-based rosette ion channel.
T. Saha (2014)
10.1021/JA972786F
Self-Assembling Cyclic β3-Peptide Nanotubes as Artificial Transmembrane Ion Channels
T. Clark (1998)
10.1002/anie.201205819
Artificial water channels.
M. Barboiu (2012)
10.1016/0005-2736(72)90178-2
Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel.
S. Hladky (1972)
10.1002/chem.201500881
Cation-Transporting Peptides: Scaffolds for Functionalized Pores?
H. Behera (2015)
10.1038/nnano.2015.279
A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane.
Jonathan R Burns (2016)
10.1021/JA00129A027
Novel Functional Artificial Ion Channel
N. Voyer (1995)
10.1016/J.CBPA.2007.09.009
Sophistication of foldamer form and function in vitro and in vivo.
Arjel D. Bautista (2007)
10.1126/science.1193383
Coherence Resonance in a Single-Walled Carbon Nanotube Ion Channel
C. Lee (2010)
10.1021/JA056888E
A unimolecular G-quadruplex that functions as a synthetic transmembrane Na+ transporter.
Mark S. Kaucher (2006)
10.1021/ar400027c
Development of toroidal nanostructures by self-assembly: rational designs and applications.
YongJu Kim (2013)
10.1002/ANIE.200460804
Aquaporin water channels (Nobel Lecture).
P. Agre (2004)
10.1039/c6cc00045b
Modulation of helix stability of indolocarbazole-pyridine hybrid foldamers.
J. Kim (2016)
10.1016/J.BBAMEM.2007.05.011
The gramicidin ion channel: a model membrane protein.
Devaki A. Kelkar (2007)
10.1021/JA025983+
Modulating ion channel properties of transmembrane peptide nanotubes through heteromeric supramolecular assemblies.
J. Sánchez‐Quesada (2002)
10.1038/nbt874
Fabrication of novel biomaterials through molecular self-assembly
S. Zhang (2003)
10.1021/CR990120T
A field guide to foldamers.
D. J. Hill (2001)
10.1021/CR030072J
Supramolecular nanotube architectures based on amphiphilic molecules.
T. Shimizu (2005)
10.1021/ja5024699
Thermal gating in lipid membranes using thermoresponsive cyclic peptide-polymer conjugates.
Maarten Danial (2014)
10.1002/(SICI)1521-4095(200004)12:7<510::AID-ADMA510>3.0.CO;2-3
Functional Membranes Containing Ion-Selective Matrix-Fixed Supramolecular Channels
U. Beginn (2000)
10.1021/JA002436K
Cyclic Peptides as Molecular Adapters for a Pore-Forming Protein
J. Sánchez‐Quesada (2000)
10.1021/JA048546Z
Unexpected Relationships between Structure and Function in α,β-Peptides: Antimicrobial Foldamers with Heterogeneous Backbones
Margaret A. Schmitt (2004)
10.1021/jacs.5b11808
Folding-Generated Molecular Tubes Containing One-Dimensional Water Chains.
Hae-Geun Jeon (2016)
10.1021/acs.nanolett.5b03938
Biomimetic Nanotubes Based on Cyclodextrins for Ion-Channel Applications.
Hajar Mamad-Hemouch (2015)
10.1021/ja7110702
Large and stable transmembrane pores from guanosine-bile acid conjugates.
L. Ma (2008)
10.1038/35086601
Antibacterial agents based on the cyclic d,l-α-peptide architecture
S. Fernandez-Lopez (2001)
10.1021/BM060862D
Double assembly composed of lectin association with columnar molecular assembly of cyclic tri-beta-peptide having sugar units.
F. Fujimura (2007)
10.1007/978-3-319-21756-7_14
Bioinspired Artificial Sodium and Potassium Ion Channels.
N. Rodríguez-Vázquez (2016)
10.2174/157341311797483772
Interactions of End-functionalized Nanotubes with Lipid Vesicles: Spontaneous Insertion and Nanotube Self-Organization
Meenakshi Dutt (2011)
10.1038/369301A0
Artificial transmembrane ion channels from self-assembling peptide nanotubes
M. Reza Ghadiri (1994)
10.1038/nrm2668
Ion channels versus ion pumps: the principal difference, in principle
D. Gadsby (2009)
10.1021/ar4000136
Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.
F. De Riccardis (2013)
10.1021/JA039371G
Saccharide-dependent induction of chiral helicity in achiral synthetic hydrogen-bonding oligomers.
M. Inouye (2004)
10.1038/364516A0
Synthesis of a tubular polymer from threaded cyclodextrins
Akira Harada (1993)
10.1002/cbic.201500188
Foldamers as Anticancer Therapeutics: Targeting Protein–Protein Interactions and the Cell Membrane
Sara Fahs (2015)
10.1021/JA00092A079
Nanoscale Tubular Ensembles with Specified Internal Diameters. Design of a Self-Assembled Nanotube with a 13-.ANG. Pore
N. Khazanovich (1994)
10.1073/PNAS.0400352101
Understanding nature's design for a nanosyringe.
C. F. López (2004)
10.1021/ja9067518
Anion-macrodipole interactions: self-assembling oligourea/amide macrocycles as anion transporters that respond to membrane polarization.
Andreas Hennig (2009)
10.1021/JA00159A083
Synthesis of a membrane-insertable, sodium cation conducting channel : kinetic analysis by dynamic 23Na NMR
A. Nakano (1990)
10.1021/cr400085m
Nanotubes self-assembled from amphiphilic molecules via helical intermediates.
Thomas G Barclay (2014)
10.1039/c1cc16369h
Mimicking an antimicrobial peptide polymyxin B by use of cyclodextrin.
H. Yamamura (2012)
10.1021/AR0400802
Rigid-rod molecules in biomembrane models: from hydrogen-bonded chains to synthetic multifunctional pores.
N. Sakai (2005)
10.1039/B303649A
Synthetic multifunctional pores: lessons from rigid-rod β-barrels
N. Sakai (2003)
10.1002/PEN.23240
New liquid crystalline columnar poly(epichlorohydrin-co-ethylene oxide) derivatives leading to biomimetic ion channels
S. V. Bhosale (2013)
10.1021/jacs.5b04911
Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels.
Q. Liu (2015)
10.1039/c2cc36391g
Cavity-containing, backbone-rigidified foldamers and macrocycles.
K. Yamato (2012)
10.1021/ar700266f
Hollow crescents, helices, and macrocycles from enforced folding and folding-assisted macrocyclization.
B. Gong (2008)
10.1073/PNAS.032527099
Entropically driven self-assembly of multichannel rosette nanotubes
H. Fenniri (2002)
10.1073/pnas.0609506104
Electron transfer in Me-blocked heterodimeric α,γ-peptide nanotubular donor–acceptor hybrids
R. J. Brea (2007)
10.1126/SCIENCE.1077353
Fluorometric Detection of Enzyme Activity with Synthetic Supramolecular Pores
Gopal Das (2002)
10.1039/c4ob02041c
Effect of the amino acid composition of cyclic peptides on their self-assembly in lipid bilayers.
Maarten Danial (2015)
10.1021/JA00141A005
STRUCTURE AND DYNAMICS OF SELF-ASSEMBLING PEPTIDE NANOTUBES AND THE CHANNEL-MEDIATED WATER ORGANIZATION AND SELF-DIFFUSION. A MOLECULAR DYNAMICS STUDY
M. Engels (1995)
10.1021/JA00102A054
Channel-Mediated Transport of Glucose Across Lipid Bilayers
J. Granja (1994)
10.1126/science.1126524
Photoproduction of Proton Gradients with π-Stacked Fluorophore Scaffolds in Lipid Bilayers
Sheshanath V. Bhosale (2006)
10.1002/CHEM.200390016
Voltage-dependent formation of anion channels by synthetic rigid-rod push-pull beta-barrels.
N. Sakai (2003)
10.1039/b915923c
Molecular self-assembly and applications of designer peptide amphiphiles.
X. Zhao (2010)
10.1021/ja807078y
Highly conducting transmembrane pores formed by aromatic oligoamide macrocycles.
A. J. Helsel (2008)
10.1002/anie.201305765
Lipid-Bilayer-Spanning DNA Nanopores with a Bifunctional Porphyrin Anchor**
Jonathan R Burns (2013)
10.1039/B712800B
Large diameter non-covalent nanotubes based on the self-assembly of para-carboxylatocalix[4]arene
S. Dalgarno (2007)
10.1021/JA045987+
Synthetic multifunctional pores with external and internal active sites for ligand gating and noncompetitive blockage.
Virginie Gorteau (2004)
10.1021/ja801129a
Transmembrane nanopores from porphyrin supramolecules.
A. Satake (2008)
10.1016/J.BMC.2003.06.002
Outer surface modification of synthetic multifunctional pores.
P. Talukdar (2004)
10.1021/JA076066C
Selective transport of water mediated by porous dendritic dipeptides.
Mark S. Kaucher (2007)
10.1039/P29950000417
Channel-type molecular structures. Part 4. Transmembrane transport of alkali-metal ions by ‘bouquet’ molecules
M. J. Pregel (1995)
10.1021/ja802587j
Stimuli-Responsive Polyguanidino-Oxanorbornene Membrane Transporters as Multicomponent Sensors in Complex Matrices
A. Hennig (2008)
10.1002/psc.1206
Nanofiber formation of amphiphilic cyclic tri‐β‐peptide
Y. Ishihara (2010)
10.1039/B603256G
Synthetic ion channels in bilayer membranes.
T. Fyles (2007)
10.1021/JA074285S
The herringbone helix: a noncanonical folding in aromatic-aliphatic peptides.
N. Delsuc (2007)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar