Online citations, reference lists, and bibliographies.
← Back to Search

Numerical Modelling Of Hip Fracture Patterns In Human Femur

M. Marco, E. Giner, J. R. Caeiro-Rey, M. H. Miguélez, R. Larraínzar-Garijo
Published 2019 · Geology, Computer Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
BACKGROUND AND OBJECTIVE Hip fracture morphology is an important factor determining the ulterior surgical repair and treatment, because of the dependence of the treatment on fracture morphology. Although numerical modelling can be a valuable tool for fracture prediction, the simulation of femur fracture is not simple due to the complexity of bone architecture and the numerical techniques required for simulation of crack propagation. Numerical models assuming homogeneous fracture mechanical properties commonly fail in the prediction of fracture patterns. This paper focuses on the prediction of femur fracture based on the development of a finite element model able to simulate the generation of long crack paths. METHODS The finite element model developed in this work demonstrates the capability of predicting fracture patterns under stance loading configuration, allowing the distinction between the main fracture paths: intracapsular and extracapsular fractures. It is worth noting the prediction of different fracture patterns for the same loading conditions, as observed during experimental tests. RESULTS AND CONCLUSIONS The internal distribution of bone mineral density and femur geometry strongly influences the femur fracture morphology and fracture load. Experimental fracture paths have been analysed by means of micro-computed tomography allowing the comparison of predicted and experimental crack surfaces, confirming the good accuracy of the numerical model.
This paper references
10.1016/J.ENGFRACMECH.2018.04.024
Modelling of femur fracture using finite element procedures
M. Marco (2018)
10.1016/j.jbiomech.2016.02.032
How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements.
L. Grassi (2016)
10.1016/j.medengphy.2014.02.019
Development of a balanced experimental-computational approach to understanding the mechanics of proximal femur fractures.
B. Helgason (2014)
10.1016/J.JBIOMECH.2007.09.009
Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
E. Schileo (2008)
10.1016/j.bone.2014.07.001
Human proximal femur bone adaptation to variations in hip geometry.
M. M. Machado (2014)
10.1016/j.medengphy.2016.08.010
Morphology based anisotropic finite element models of the proximal femur validated with experimental data.
W. Enns-Bray (2016)
10.1007/s10439-013-0864-9
A Robust 3D Finite Element Simulation of Human Proximal Femur Progressive Fracture Under Stance Load with Experimental Validation
R. Hambli (2013)
10.1016/j.jbiomech.2014.11.042
Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing.
O. Ariza (2015)
The mechanical properties of bone.
Evans Fg (1969)
10.1016/j.cmpb.2017.11.020
Automation of a DXA-based finite element tool for clinical assessment of hip fracture risk
Yunhua Luo (2018)
10.1001/jama.2009.1462
Incidence and mortality of hip fractures in the United States.
C. Brauer (2009)
10.1016/j.jbiomech.2012.11.013
Accurate in vitro identification of fracture onset in bones: failure mechanism of the proximal human femur.
M. Juszczyk (2013)
10.1016/j.jmbbm.2015.11.026
Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup.
P. Varga (2016)
10.1016/J.ENGFRACMECH.2008.10.015
An Abaqus implementation of the extended finite element method
E. Giner (2009)
10.1201/B14263
Bone mechanics handbook
S. Cowin (2001)
10.1016/j.jbiomech.2014.08.024
To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
E. Schileo (2014)
10.1007/S001130050735
[Morbidity and mortality in para-articular femoral fractures in advanced age. Results of a prospective study].
J. Raunest (2001)
10.1016/j.jmbbm.2016.06.004
Experimental validation of DXA-based finite element models for prediction of femoral strength.
E. Dall’Ara (2016)
10.1016/j.jbiomech.2011.05.038
The human proximal femur behaves linearly elastic up to failure under physiological loading conditions.
M. Juszczyk (2011)
10.1007/s00198-013-2504-5
Performance of risk assessment instruments for predicting osteoporotic fracture risk: a systematic review
S. Nayak (2013)
10.1098/rsta.2010.0046
Mechanical testing of bones: the positive synergy of finite–element models and in vitro experiments
L. Cristofolini (2010)
10.1016/j.clinbiomech.2013.12.018
How accurately can we predict the fracture load of the proximal femur using finite element models?
Sven van den Munckhof (2014)
10.1016/j.jbiomech.2008.05.017
An accurate estimation of bone density improves the accuracy of subject-specific finite element models.
E. Schileo (2008)
10.1016/j.jmbbm.2014.05.006
Numerical modelling of the mechanical behaviour of an osteon with microcracks.
E. Giner (2014)
10.1016/S1350-4533(01)00045-5
Improved prediction of proximal femoral fracture load using nonlinear finite element models.
J. Keyak (2001)
10.1016/j.jbiomech.2013.10.033
Specimen-specific modeling of hip fracture pattern and repair.
Azhar A. Ali (2014)
10.1016/j.jmbbm.2014.12.006
A review on recent advances in numerical modelling of bone cutting.
M. Marco (2015)
10.1007/s001130050735
Morbidität und Letalität bei hüftgelenknahen Femurfrakturen im höheren Lebensalter Ergebnisse einer prospektiven Studie
J. Raunest (2001)
10.1016/J.FINEL.2018.04.009
A heterogeneous orientation criterion for crack modelling in cortical bone using a phantom-node approach
M. Marco (2018)
10.1016/j.jmbbm.2012.08.011
Integrated remodeling-to-fracture finite element model of human proximal femur behavior.
R. Hambli (2013)
10.1016/j.medengphy.2012.02.012
Biomechanical stress maps of an artificial femur obtained using a new infrared thermography technique validated by strain gages.
S. Shah (2012)
10.1016/j.cmpb.2010.11.008
Validated finite element models of the proximal femur using two-dimensional projected geometry and bone density
J. O. D. Buijs (2011)
10.1115/1.4028415
Full-field strain measurement during mechanical testing of the human femur at physiologically relevant strain rates.
L. Grassi (2014)
10.1007/s00198-011-1601-6
Secular trends in the incidence of hip and other osteoporotic fractures
C. Cooper (2011)
10.1016/S1350-4533(01)00094-7
Prediction of fracture location in the proximal femur using finite element models.
J. Keyak (2001)
10.1007/s10439-017-1952-z
On the Failure Initiation in the Proximal Human Femur Under Simulated Sideways Fall
H. Bahaloo (2017)
10.1016/S0021-9290(03)00071-X
Trabecular bone modulus-density relationships depend on anatomic site.
E. Morgan (2003)
10.1016/j.jbiomech.2014.08.030
European Society of Biomechanics S.M. Perren Award 2014: Safety factor of the proximal femur during gait: a population-based finite element study.
F. Taddei (2014)
10.1302/0301-620X.89B7.19148
The role of polymethylmethacrylate bone cement in modern orthopaedic surgery.
J. Webb (2007)
10.1016/J.JBIOMECH.2007.02.010
Subject-specific finite element models can accurately predict strain levels in long bones.
E. Schileo (2007)
10.1016/j.jbiomech.2011.10.019
Accuracy of finite element predictions in sideways load configurations for the proximal human femur.
L. Grassi (2012)
10.1055/b-0038-160811
AO Principles of Fracture Management
T. Rüedi (2001)
10.1016/j.jmbbm.2016.07.004
Can CT image deblurring improve finite element predictions at the proximal femur?
C. Falcinelli (2016)
10.1016/j.jbiomech.2009.05.038
Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk.
R. Bryan (2009)
10.1016/J.COMPOSITESA.2007.01.017
Progressive damage modeling in fiber-reinforced materials
I. Lapczyk (2007)
10.1007/s11517-012-0986-5
A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion
R. Hambli (2012)
10.1016/J.JBIOMECH.2007.03.015
In vitro replication of spontaneous fractures of the proximal human femur.
L. Cristofolini (2007)
10.1007/s10439-009-9887-7
Mechanical Evaluation of Large-Size Fourth-Generation Composite Femur and Tibia Models
M. Gardner (2009)
10.1007/s10439-017-1877-6
Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant
M. Marco (2017)
10.1016/j.jmbbm.2013.02.006
Experimental validation of finite element model for proximal composite femur using optical measurements.
L. Grassi (2013)
10.1016/S0021-9290(01)00011-2
Dependence of yield strain of human trabecular bone on anatomic site.
E. Morgan (2001)
10.1115/1.4040586
Osteoporotic hip fracture prediction: is T-score based criterion enough? A Hip Structural Analysis based model.
A. Aldieri (2018)
10.1016/J.ENGFRACMECH.2003.08.003
Modelling bone tissue fracture and healing: a review ☆
M. Doblaré (2004)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar