Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Supercritical Fluid Technologies And Tissue Engineering Scaffolds

R. Quirk, K. Shakesheff, S. Howdle
Published 2004 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Supercritical fluid (SCF) processing methods possess advantages over standard processing methods for the production of scaffolds for use in tissue engineering. Advantages include the absence of organic solvents, the ability to incorporate delicate biologicals without loss of activity, and control over the morphology of an internal porous architecture. This review describes SCF processing methods of relevance to tissue engineering and controlled release strategies, with focus on the incorporation of bioactives such as protein growth factors.
This paper references
10.1016/S0142-9612(02)00528-8
Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication.
E. Sachlos (2003)
10.1615/CRITREVTHERDRUGCARRIERSYST.V18.I2.20
Preparation of drug delivery systems using supercritical fluid technology.
U. Kompella (2001)
10.1016/S0006-291X(02)02561-5
Immunoselection and adenoviral genetic modulation of human osteoprogenitors: in vivo bone formation on PLA scaffold.
Daniel Howard (2002)
10.1016/S0169-409X(98)00023-4
Host response to tissue engineered devices.
Mikos (1998)
10.1021/JS950482Q
Precipitation of proteins in supercritical carbon dioxide.
M. Winters (1996)
10.1002/JBM.10134
Engineering vascular networks in porous polymer matrices.
M. C. Peters (2002)
10.1016/S0142-9612(02)00276-4
Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds.
J. M. Taboas (2003)
10.1016/S0142-9612(99)00010-1
In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration.
G. Evans (1999)
10.1002/JBM.1251
Drug-releasing scaffolds fabricated from drug-loaded microspheres.
M. Nof (2002)
10.1002/PEN.760341408
Generation of microcellular polymeric foams using supercritical carbon dioxide. II: Cell growth and skin formation
S. K. Goel (1994)
10.1016/S0168-3659(99)00268-0
Active growth factor delivery from poly(D,L-lactide-co-glycolide) foams prepared in supercritical CO(2).
D. D. Hile (2000)
10.1016/S0378-5173(96)04838-7
Improvement of nifedipine dissolution characteristics using supercritical CO2
P. Senčar-Božič (1997)
10.1016/S0169-409X(98)00025-8
Transplantation of cells in matrices for tissue regeneration.
J. Marler (1998)
10.1002/(SICI)1097-4636(19981215)42:4<491::AID-JBM3>3.0.CO;2-F
Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds.
K. Whang (1998)
10.1038/35102181
Stem cells in tissue engineering
P. Bianco (2001)
10.1023/A:1007502828372
Growth Factor Delivery for Tissue Engineering
J. Babensee (2004)
10.1021/MA0119225
Rigid Pore Structure from Highly Swollen Polymer Gels
H. H. Winter (2002)
10.1126/SCIENCE.1069210
Tissue Engineering--Current Challenges and Expanding Opportunities
L. Griffith (2002)
10.1071/CH02058
Improving Drug Delivery Using Polymers and
L. A. Stanton (2002)
10.1016/0142-9612(94)90162-7
Use of supercritical CO2 for bone delipidation.
J. Fages (1994)
10.1021/bp9600492
Microencapsulation of Naproxen Using Rapid Expansion of Supercritical Solutions
Jonghyun Kim (1996)
10.1038/418025a
Biomedicine: Stem-cell competition
S. Orkin (2002)
10.1021/IE0002475
Supercritical Fluid Technology in Textile Processing: An Overview
G. Montero (2000)
Improving drug delivery using polymers and supercritical fluid technology
L. A. Stanton (2002)
10.1006/BBRC.2002.6623
Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds.
K. Partridge (2002)
10.1002/BIT.1079
Production of different morphologies of biocompatible polymeric materials by supercritical CO(2) antisolvent techniques.
N. Elvassore (2001)
10.1016/S0167-7799(98)01191-3
Development of biocompatible synthetic extracellular matrices for tissue engineering.
B. Kim (1998)
10.1097/00003086-199910001-00012
Synthetic biodegradable polymers for orthopaedic applications.
E. Behravesh (1999)
10.1023/A:1011991808423
Process Variable Implications for Residual Solvent Removal and Polymer Morphology in the Formation of Gentamycin-Loaded Poly (L-lactide) Microparticles
Rick Falk (2004)
10.1023/A:1018868423309
Preparation of Biodegradable Microparticles Using Solution-Enhanced Dispersion by Supercritical Fluids (SEDS)
R. Ghaderi (2004)
10.1359/jbmr.2003.18.1.47
Induction of Human Osteoprogenitor Chemotaxis, Proliferation, Differentiation, and Bone Formation by Osteoblast Stimulating Factor‐1/Pleiotrophin: Osteoconductive Biomimetic Scaffolds for Tissue Engineering
X. Yang (2003)
10.1002/APP.1964.070080531
Dynamic mechanical properties of several elastomers and their potentialities in vibration control applications
T. P. Yin (1964)
10.1097/00006534-199111000-00001
Synthetic Polymers Seeded with Chondrocytes Provide a Template for New Cartilage Formation
C. Vacanti (1991)
10.1053/JOMS.2000.7262
Cartilage formation by cultured chondrocytes in a new scaffold made of poly(L-lactide-ϵ-caprolactone) sponge
M. Honda (2000)
The use of supercritical fluids as reaction medium for ceramic powder synthesis
C. Pommier (1994)
10.1115/1.2891228
Tissue engineering by cell transplantation using degradable polymer substrates.
L. Cima (1991)
10.1002/(SICI)1097-0290(20000205)67:3<344::AID-BIT11>3.0.CO;2-2
Hepatocyte behavior within three-dimensional porous alginate scaffolds.
R. Glicklis (2000)
10.1016/S8756-3282(01)00617-2
Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification.
X. Yang (2001)
10.1002/JOR.1100170209
Hyaluronic acid‐based polymers as cell carriers for tissue‐engineered repair of bone and cartilage
L. Solchaga (1999)
10.1002/JPS.1113
Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques.
N. Elvassore (2001)
10.1089/107632702753503045
Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.
W. Murphy (2002)
10.1006/EXCR.1999.4595
Engineered smooth muscle tissues: regulating cell phenotype with the scaffold.
B. Kim (1999)
10.1109/MSPEC.2002.1088442
Cover story: synthetic skin
W. Leventon (2002)
10.1163/156856298X00451
Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion.
A. Park (1998)
10.1002/3527606726.CH10
Polymer Processing with Supercritical Fluids
Oliver S. Fleming (2006)
10.1002/ADMA.19970091309
Imaging polymers with supercritical carbon dioxide
C. Ober (1997)
10.1007/BF00700871
Structure-property relationships in the case of the degradation of massive aliphatic poly-(α-hydroxy acids) in aqueous media
S. Li (1990)
10.1038/nbt1101-1029
Polymeric system for dual growth factor delivery
T. P. Richardson (2001)
10.1002/1097-4636(20001215)52:4<695::AID-JBM14>3.0.CO;2-G
Chemico-physical properties of hyaluronan-based sponges.
E. Milella (2000)
10.1002/PEN.760341407
Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation
S. K. Goel (1994)
10.1016/S0142-9612(00)00121-6
Scaffolds in tissue engineering bone and cartilage.
D. Hutmacher (2000)
10.1080/713713599
Novel osteoinductive biomimetic scaffolds stimulate human osteoprogenitor activity--implications for skeletal repair.
X. Yang (2003)
10.1002/ADMA.200300380
Porous Materials and Supercritical Fluids
A. Cooper (2003)
10.1016/S0142-9612(00)00228-3
Morphology and metabolism of hepatocytes cultured in Petri dishes on films and in non-woven fabrics of hyaluronic acid esters.
G. Catapano (2001)
Synthetic skin
W. Leventon (2002)
10.1002/ADMA.200390047
Porous Polymer and Cell Composites That Self‐Assemble In Situ
A. Salem (2003)
10.1115/1.2804373
The Role of Gas Dissolution and Induced Crystallization During Microcellular Polymer Processing: A Study of Poly (Ethylene Terephthalate) and Carbon Dioxide Systems
D. Baldwin (1995)
10.1002/APP.11978
Precipitation polymerization of methyl methacrylate in tetrahydrofuran with compressed CO2 as antisolvent
Qun Xu (2003)
10.1016/S0142-9612(00)00120-4
Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering.
W. Murphy (2000)
10.1016/S0142-9612(98)00124-0
Histological integration of allogeneic cancellous bone tissue treated by supercritical CO2 implanted in sheep bones.
P. Frayssinet (1998)
10.1039/B008188O
Supercritical fluid mixing: preparation of thermally sensitive polymer composites containing bioactive materials
S. Howdle (2001)
10.1002/BIT.260430813
Collagen fabrics as biomaterials
J. F. Cavallaro (1994)
10.1021/bp0255513
CO2 and Fluorinated Solvent‐Based Technologies for Protein Microparticle Precipitation from Aqueous Solutions
M. Sarkari (2003)
10.1016/S0896-8446(02)00034-7
The effect of initial drop size on particle size in the supercritical antisolvent precipitation (SAS) technique
Markku Rantakylä (2002)
10.1016/S0142-9612(02)00420-9
Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks.
Y. D. Park (2003)
10.1016/S0896-8446(01)00064-X
Particle design using supercritical fluids: Literature and patent survey
Jennifer Jung (2001)
10.1096/fj.00-0564fje
Development of growth factor fusion proteins for cell‐triggered drug delivery
S. Sakiyama-Elbert (2001)
10.1007/BF01037930
Reconstructive surgery of the urethra: a pilot study in the rabbit on the use of hyaluronan benzyl ester (Hyaff-11) biodegradable grafts
G. Italiano (2004)
10.1016/0142-9612(96)85756-5
Stabilized polyglycolic acid fibre-based tubes for tissue engineering.
D. Mooney (1996)
10.1016/S0939-6411(97)00124-0
Size controlled production of biodegradable microparticles with supercritical gases.
J. Thies (1998)
10.1211/0022357011777963
Growth factor release from tissue engineering scaffolds
M. Whitaker (2001)
10.1021/IE0004904
Production of Protein-Loaded Polymeric Microcapsules by Compressed CO2 in a Mixed Solvent
N. Elvassore (2001)
10.1002/JBM.10209
Carbon dioxide extraction of residual chloroform from biodegradable polymers.
Wendy S. Koegler (2002)
10.1038/NBT0794-689
Biodegradable Polymer Scaffolds for Tissue Engineering
L. Freed (1994)
10.1016/S0168-3659(99)00221-7
Development of fibrin derivatives for controlled release of heparin-binding growth factors.
S. Sakiyama-Elbert (2000)
10.1016/S0168-3659(99)00138-8
Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery.
M. Sheridan (2000)
10.1023/A:1020874532674
Review Environmentally friendly coatings using carbon dioxide as the carrier medium
J. Hay (2002)
10.1016/0378-5173(93)90131-X
Aerosol solvent extraction system : a new microparticle production technique
J. Bleich (1993)
10.1016/S0168-3659(02)00369-3
Controllable delivery of non-viral DNA from porous scaffolds.
Jae-Hyung Jang (2003)
10.1002/1099-0518(20010215)39:4<562::AID-POLA1027>3.0.CO;2-L
Emulsion copolymerization ofD,L-lactide and glycolide in supercritical carbon dioxide
D. D. Hile (2001)
10.1016/0142-9612(96)87284-X
Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents.
D. Mooney (1996)
10.1002/ADMA.200290003
Incorporation of Proteins into Polymer Materials by a Novel Supercritical Fluid Processing Method
M. Watson (2002)
10.1096/fasebj.13.15.2214
Incorporation of heparin‐binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering
S. Sakiyama (1999)
10.1097/00003086-199011000-00043
Immune responses to allogeneic and xenogeneic implants of collagen and collagen derivatives.
F. Delustro (1990)
10.1002/APP.12201
Formation of microcapsules of medicines by the rapid expansion of a supercritical solution with a nonsolvent
K. Matsuyama (2003)
10.1615/JLONGTERMEFFMEDIMPLANTS.V12.I1.20
Recent advances in tissue engineering: an invited review.
R. Pearson (2002)
10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
Open pore biodegradable matrices formed with gas foaming.
L. Harris (1998)
10.1002/BIT.260410308
Formation of microparticulate protein powder using a supercritical fluid antisolvent
S. Yeo (1993)
10.1038/74473
Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension
J. C. Schense (2000)



This paper is referenced by
10.1002/APP.43644
Fabrication of bimodal porous PLGA scaffolds by supercritical CO2 foaming/particle leaching technique
Xin Xin (2016)
Formation of Cyclodextrin-Drug Inclusion Compounds and Polymeric Drug Delivery Systems using Supercritical Carbon Dioxide
Heather E. Grandelli (2013)
10.1016/J.CJCHE.2020.07.063
Highly interconnected macroporous MBG/PLGA scaffolds with enhanced mechanical and biological properties via green foaming strategy
Chaobo Song (2020)
10.1007/S10853-006-7023-8
Porous methacrylate tissue engineering scaffolds: using carbon dioxide to control porosity and interconnectivity
J. J. Barry (2006)
SUPERKRITIČNI FLUIDI KOT MEDIJ ZA PROCESIRANJE IN SINTEZO POLIMEROV
D. Čuček (2015)
Poly (e-caprolactone)/SBA-15 composite biomaterials plasticized with greener additives
A. S. Rosa (2013)
10.1016/j.cmpb.2010.08.010
Interconnectivity analysis of supercritical CO2-foamed scaffolds
G. Lemon (2012)
10.1089/ten.TEB.2009.0639
Controlling the porosity and microarchitecture of hydrogels for tissue engineering.
N. Annabi (2010)
10.1080/09205063.2016.1221699
Antibacterial nanohydroxyapatite/polyurethane composite scaffolds with silver phosphate particles for bone regeneration
Jiaxing Jiang (2016)
10.1098/rsif.2009.0379
Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds
V. Mouriño (2009)
10.1205/CHERD06196
Design and Development of Three-Dimensional Scaffolds for Tissue Engineering
Chaozong Liu (2007)
10.1016/J.PROGPOLYMSCI.2010.01.006
Polymeric Materials for Bone and Cartilage Repair
D. Puppi (2010)
10.17077/etd.yl3zlvzi
Control of polymer biochemical, mechanical, and physical properties for the rational design of retinal regenerative tissue scaffolds
Kristan S Worthington (2014)
10.1081/E-EBPP-120049935
Foams: Polylactic Acid-Based System for Tissue Engineering
José Ignacio Velasco (2015)
10.1002/PEN.24478
Preparation of porous poly(L‐lactic acid)‐co‐(trimethylene‐carbonate) structures using supercritical CO2 as antisolvent and as foaming agent
A. Baklavaridis (2017)
10.1007/S10853-008-2461-0
Supercritical CO2 processing of polymers for the production of materials with applications in tissue engineering and drug delivery
A. López-Periago (2008)
10.1016/J.SUPFLU.2006.03.026
Miscibility, viscosity and density of poly (ɛ-caprolactone) in acetone + CO2 binary fluid mixtures
Kun Liu (2006)
10.1002/jbm.a.35370
Enhancement of chondrocyte proliferation, distribution, and functions within polycaprolactone scaffolds by surface treatments.
P. Uppanan (2015)
10.1002/CITE.201100052
Processing Polymeric Biomaterials using Supercritical CO2
Ž. Knez (2011)
10.1016/j.actbio.2009.01.047
Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion.
A. Duarte (2009)
TRANSITION OF PEG 35000 UNDER PRESSURE OF NITROGEN AND CARBON DIOXIDE
Zoran Mandžuka (2010)
10.1016/j.actbio.2008.10.018
Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process.
C. García-González (2009)
10.1016/J.SUPFLU.2008.10.001
Supercritical fluids processing of polymers for pharmaceutical and medical applications
E. Reverchon (2009)
10.1016/J.CJCHE.2017.04.005
Bi-/multi-modal pore formation of PLGA/hydroxyapatite composite scaffolds by heterogeneous nucleation in supercritical CO2 foaming
Xin Xin (2017)
10.1002/MACP.201300801
Polysaccharide Biocatalysis: From Synthesizing Carbohydrate Standards to Establishing Characterization Methods
J. Ćirić (2014)
10.1016/B978-075068084-4/50008-X
The Bainite Reaction
H. Bhadeshia (2006)
10.1089/ten.TEC.2012.0170
A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.
S. H. Kim (2013)
10.1016/J.JPBA.2007.11.005
Spectroscopic and chromatographic characterization of triflusal delivery systems prepared by using supercritical impregnation technologies.
A. Argemí (2008)
10.1002/PAT.729
Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies
J. Jagur-Grodzinski (2006)
10.1016/B978-0-08-055294-1.00069-6
Polymers of Biological Origin
S. S. Silva (2011)
10.1016/j.carbpol.2014.05.083
Alginate based hybrid copolymer hydrogels--influence of pore morphology on cell-material interaction.
Finosh Gnanaprakasam Thankam (2014)
10.1201/B19948-17
Preparation of Self-Assembled Chitin Nanofibers and Nanocomposites Using Ionic Liquid
Vijay Kumar Thakur (2016)
See more
Semantic Scholar Logo Some data provided by SemanticScholar