Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Electron Tunneling Through Pseudomonas Aeruginosa Azurins On SAM Gold Electrodes.

K. Yokoyama, Brian S. Leigh, Yuling Sheng, K. Niki, N. Nakamura, H. Ohno, J. Winkler, H. Gray, J. Richards
Published 2008 · Chemistry, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Robust voltammetric responses were obtained for wild-type and Y72F/H83Q/Q107H/Y108F azurins adsorbed on CH(3)(CH(2))(n)SH:HO(CH(2))(m)SH (n=m=4,6,8,11; n=13,15 m=11) self-assembled monolayer (SAM) gold electrodes in acidic solution (pH 4.6) at high ionic strengths. Electron-transfer (ET) rates do not vary substantially with ionic strength, suggesting that the SAM methyl headgroup binds to azurin by hydrophobic interactions. The voltammetric responses for both proteins at higher pH values (>4.6 to 11) also were strong. A binding model in which the SAM hydroxyl headgroup interacts with the Asn47 carboxamide accounts for the relatively strong coupling to the copper center that can be inferred from the ET rates. Of particular interest is the finding that rate constants for electron tunneling through n = 8, 13 SAMs are higher at pH 11 than those at pH 4.6, possibly owing to enhanced coupling of the SAM to Asn 47 caused by deprotonation of nearby surface residues.
This paper references
10.1073/PNAS.88.4.1325
Gene synthesis, expression, and mutagenesis of the blue copper proteins azurin and plastocyanin.
T. K. Chang (1991)
10.1021/JP0620670
On the electron transfer mechanism between cytochrome C and metal electrodes. Evidence for dynamic control at short distances.
Hongjun Yue (2006)
10.1021/BI990624L
Backbone dynamics of azurin in solution: slow conformational change associated with deprotonation of histidine 35.
A. Kalverda (1999)
10.1016/0022-2836(91)80173-R
Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0. A pH-induced conformational transition involves a peptide bond flip.
H. Nar (1991)
J. Am. Chem. Soc
Ae Kasmi (1998)
J. N. Onuchic Chem. Biol
Jj Regan (1995)
J. Biol. Inorg. Chem Inorg. Chim. Acta
Hb Gray (1992)
10.1021/JP055768Q
The effect of ionic strength on the electron-transfer rate of surface immobilized cytochrome C.
Hongjun Yue (2006)
10.1007/s007750000146
Copper coordination in blue proteins
H. Gray (2000)
10.1039/A605567B
Long-range electron-transfer reaction rates to cytochromec across long- and short-chain alkanethiol self-assembledmonolayers: Electroreflectancestudies
Z. Q. Feng (1997)
10.1073/PNAS.0408029102
Long-range electron transfer.
H. Gray (2005)
10.1016/0022-0728(95)04058-V
Electroreflectance spectroscopic study of the electron transfer rate of cytochrome c electrostatically immobilized on the ω-carboxyl alkanethiol monolayer modified gold electrode
Z. Q. Feng (1995)
Colloid Interface Sci
Ak Gaigalas (1997)
10.1021/JP035392L
Coupling to Lysine-13 Promotes Electron Tunneling through Carboxylate-Terminated Alkanethiol Self-Assembled Monolayers to Cytochrome c
K. Niki (2003)
Phys. Chem. Chem. Phys
Dh Murgida (2005)
J. Phys. Chem. B
Ljc Jeuken (2001)
Electrochem. Solid-State Lett 2002;5:E67
R Tanimura (2002)
10.1016/S1567-5394(01)00157-8
Intermolecular biological electron transfer: an electrochemical approach.
K. Niki (2002)
J. Phys. Chem. B
H Yue (2006)
10.1021/JA047875O
Mimicking protein-protein electron transfer: voltammetry of Pseudomonas aeruginosa azurin and the Thermus thermophilus Cu(A) domain at omega-derivatized self-assembled-monolayer gold electrodes.
Kyoko Fujita (2004)
J. Phys. Chem. B
Jj Wei (2004)
J. Electroanal.Chem
P Firstrup (2001)
Colloid Interface Sci 1997;193:60
AK Gaigalas (1997)
Bioelectrochemistry
K Niki (2002)
J. Am. Chem. Soc
K Fujita (2004)
10.1149/1.1517770
Active Carboxylic Acid-Terminated Alkanethiol Self-Assembled Monolayers on Gold Bead Electrodes for Immobilization of Cytochromes c
R. Tanimura (2002)
Langmuir
M Collinson (1992)
J. Am. Chem. Soc Farver O, Pecht I. Adv. Chem. Phys
Br Crane (1999)
J. Electroanal, Chem
Zq Feng (1995)
10.1136/bmj.1.4959.155-a
Biochemistry
F. G. Young (1955)
疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A
宁北芳 (2005)
10.1021/JA034719T
Charge-transfer mechanism for cytochrome c adsorbed on nanometer thick films. Distinguishing frictional control from conformational gating.
D. Khoshtariya (2003)
PubMed: 17034174] 28
C Gradinaru (2005)
10.1002/9780470141663.CH10
Copper Proteins as Model Systems for Investigating Intramolecular Electron Transfer Processes
O. Farver (2007)
Electrochem. Solid-State Lett
R Tanimura (2002)
10.1039/B507989F
Redox and redox-coupled processes of heme proteins and enzymes at electrochemical interfaces.
D. Murgida (2005)
10.1021/JA0115870
Electron tunneling in single crystals of Pseudomonas aeruginosa azurins.
B. Crane (2001)
10.1021/JA00005A068
Electron-transfer reaction of cytochrome c adsorbed on carboxylic acid terminated alkanethiol monolayer electrodes
M. Tarlov (1991)
10.3357/ASEM.2356.2009
Kinetics and kinematics for translational motions in microgravity during parabolic flight.
L. Stirling (2009)
10.1021/JP992591P
An electrochemical approach to investigate gated electron transfer using a physiological model system: Cytochrome c immobilized on carboxylic acid-terminated alkanethiol self-assembled monolayers on gold electrodes
A. Avila (2000)
J. Phys. Chem. B
Q Chi (2001)
PubMed: 6418204] 35
Gw Pettigrew (1983)
10.1016/S0020-1693(00)92365-X
Axial ligand bonding in blue copper proteins
M. D. Lowery (1992)
10.1021/JA973417M
CONTROLLING INTERFACIAL ELECTRON-TRANSFER KINETICS OF CYTOCHROME C WITH MIXED SELF-ASSEMBLED MONOLAYERS
A. E. Kasmi (1998)
10.1021/JP0105589
Ordered Assembly and Controlled Electron Transfer of the Blue Copper Protein Azurin at Gold (111) Single-Crystal Substrates
Qijin Chi (2001)
J. Electroanal. Chem
S Arnold (1997)
Inorg. Chim. Acta
Ljc Jeuken (2002)
J. Phys. Chem. B
A Avila (2000)
10.1016/0005-2728(83)90181-0
The effect of iron-hexacyanide binding on the determination of redox potentials of cytochromes and copper proteins.
G. Pettigrew (1983)
J. Am. Chem. Soc
De Khoshtariya (2003)
10.1006/JCIS.1997.5034
Measurement of Electron Transfer Rates between Adsorbed Azurin and a Gold Electrode Modified with a Hexanethiol Layer
Gaigalas (1997)
10.1016/S0022-0728(01)00536-8
Voltammetry of native and recombinant Pseudomonas aeruginosa azurin on polycrystalline Au- and single-crystal Au(111)-surfaces modified by decanethiol monolayers
P. Fristrup (2001)
10.1021/J100126A037
Characterization of cytochrome c/alkanethiolate structures prepared by self-assembly on gold
Shihua. Song (1993)
J. Phys. Chem. B
H Yue (2006)
J. Chem. Soc. Faraday Trans
Zq Feng (1997)
10.1021/LA00041A004
Voltammetry of covalently immobilized cytochrome c on self-assembled monolayer electrodes
M. Collinson (1992)
10.1016/S0022-0728(79)80075-3
General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems
E. Laviron (1979)
Page 4 Inorganica Chim Acta
Lowery (2009)
10.1021/JP004283T
Electrochemical Origin of Hysteresis in the Electron-Transfer Reactions of Adsorbed Proteins: Contrasting Behavior of the “Blue” Copper Protein, Azurin, Adsorbed on Pyrolytic Graphite and Modified Gold Electrodes
Lars J. C. Jeuken and (2001)
10.1021/JP0644309
Comparison of intra- vs intermolecular long-range electron transfer in crystals of ruthenium-modified azurin.
C. Grădinaru (2006)
10.1016/J.COSSMS.2006.03.005
Understanding interfacial electron transfer to monolayer protein assemblies
Hongjun Yue (2005)
Curr. Opinion Solid State Mater. Sci
H Yue (2005)
J. Am. Chem. Soc
Mj Tarlov (1991)
J. Phys. Chem. B
K Niki (2003)
10.1021/JP048148I
Probing Electron Tunneling Pathways: Electrochemical Study of Rat Heart Cytochrome c and Its Mutant on Pyridine-Terminated SAMs
J. Wei (2004)
J. Electroanal. Chem
E Laviron (1979)
10.1016/S0020-1693(01)00809-X
The kinetics of a weakly electron-coupled proton transfer in azurin
L. Jeuken (2002)
J. Phys. Chem
S Song (1993)
10.1016/S0022-0728(96)05065-6
Investigation of the electrode reaction of cytochrome c through mixed self-assembled monolayers of alkanethiols on gold(111) surfaces
S. Arnold (1997)
10.1016/1074-5521(95)90266-X
Electron tunneling in azurin: the coupling across a β-sheet
J. J. Regan (1995)



This paper is referenced by
10.1021/jp511523z
Photogeneration and Quenching of Tryptophan Radical in Azurin.
B. C. Larson (2015)
10.1002/anie.201001298
Fluorescent cyclic voltammetry of immobilized azurin: direct observation of thermodynamic and kinetic heterogeneity.
J. Salverda (2010)
10.1021/ja303425b
Understanding the mechanism of short-range electron transfer using an immobilized cupredoxin.
S. Monari (2012)
10.1038/nchem.412
Type Zero Copper Proteins
K. Lancaster (2009)
10.1021/bc900270a
Protein binding and the electronic properties of iron(II) complexes: an electrochemical and optical investigation of outer sphere effects.
K. D. Barker (2009)
10.1016/J.JELECHEM.2017.01.039
Direct wiring of the azurin redox center to gold electrodes investigated by protein film voltammetry
Razvan C. Stan (2017)
10.1016/j.jcis.2010.08.043
Electrochemical analysis of azurin thermodynamic and adsorption properties at monolayer-protected cluster film assemblies - evidence for a more homogeneous adsorption interface.
T. D. Tran (2010)
10.1002/9781118354377.CH16
Stimuli‐Responsive Monolayers
F. A. Scaramuzzo (2013)
10.1021/jz500150y
Temperature-Driven Changeover in the Electron-Transfer Mechanism of a Thermophilic Plastocyanin.
José Luis Olloqui-Sariego (2014)
10.1021/jacs.7b03892
Multielectron Chemistry within a Model Nickel Metalloprotein: Mechanistic Implications for Acetyl-CoA Synthase.
Anastasia C. Manesis (2017)
10.1002/9783527647668.CH4
Redox Processes on Surface of Semiconductors and Metals
G. Likhtenshtein (2012)
10.1021/jp303700f
Capacitance spectroscopy: a versatile approach to resolving the redox density of states and kinetics in redox-active self-assembled monolayers.
P. Bueno (2012)
10.1016/J.JELECHEM.2015.07.005
Probing redox reaction of azurin protein immobilized on hydroxyl-terminated self-assembled monolayers with different lengths
A. Hamzehloei (2015)
10.1021/jp110460k
Mass spectrometric characterization of oligomers in Pseudomonas aeruginosa azurin solutions.
L. Sokolová (2011)
10.1016/J.EURPOLYMJ.2016.04.030
Electron transfer, conduction and biorecognition properties of the redox metalloprotein Azurin assembled onto inorganic substrates
Chiara Baldacchini (2016)
10.1016/J.JELECHEM.2011.09.005
Sweep, step, pulse, and frequency-based techniques applied to protein monolayer electrochemistry at nanoparticle interfaces
D. Campbell-Rance (2011)
10.1016/J.CCR.2009.12.023
Electrochemistry of redox-active self-assembled monolayers.
A. Eckermann (2010)
10.1073/pnas.0910837107
Fundamental signatures of short- and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions
D. Khoshtariya (2010)
10.1007/978-94-017-7218-1_10
Electrochemical Detection of 2,4,6-Trinitrotoluene at Colloidal Gold Nanoparticle Film Assemblies
Christopher P. Gulka (2015)
10.1016/J.ELECTACTA.2018.10.069
The role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions
Ulises Zitare (2019)
10.1007/978-1-4614-0347-0_2
Fundamental Studies of Long- and Short-Range Electron Exchange Mechanisms between Electrodes and Proteins
D. Waldeck (2011)
10.1021/ic302369v
Resonance Raman and electrocatalytic behavior of thiolate and imidazole bound iron porphyrin complexes on self assembled monolayers: functional modeling of cytochrome P450.
K. Sengupta (2013)
10.1021/ja101322g
Spectroscopic comparison of photogenerated tryptophan radicals in azurin: effects of local environment and structure.
H. S. Shafaat (2010)
10.1021/acs.inorgchem.5b01103
Electrochemical, Spectroscopic, and Density Functional Theory Characterization of Redox Activity in Nickel-Substituted Azurin: A Model for Acetyl-CoA Synthase.
Anastasia C Manesis (2015)
10.1039/c3cp51896e
Electron transfer with azurin at Au-SAM junctions in contact with a protic ionic melt: impact of glassy dynamics.
D. Khoshtariya (2013)
Semantic Scholar Logo Some data provided by SemanticScholar