Online citations, reference lists, and bibliographies.

A Computational Approach For The Lifetime Prediction Of Cardiovascular Balloon-expandable Stents

Ferdinando Auricchio, Andrei Constantinescu, Michele De Conti, Giulia Scalet
Published 2015 · Materials Science
Cite This
Download PDF
Analyze on Scholarcy
Share
This paper presents a methodology for the numerical fatigue-life assessment of cardiovascular balloon-expandable stents. The methodology is based on a global computational approach composed of a mechanical finite element analysis, followed by a fatigue analysis. The method is applied to a classical 316L stainless steel coronary stent design (i.e., the Medinol/Boston Scientific NIR™ stent). Fatigue criteria based on elastic and plastic shakedown concepts for finite and infinite lifetime are used to predict fatigue crack initiation and are calibrated on experimental data related to 316L stainless steel μm-size components, manufactured as stents. The results from the fatigue analysis allow to discuss several aspects affecting stent lifetime, such as the applied cyclic loading including systolic–diastolic pressurization and bending. The generality of the proposed methodology encourages further investigations of such an approach for its application to other materials or small-scale components.
This paper references
10.1109/TMI.2005.862752
Displacement and velocity of the coronary arteries: cardiac and respiratory motion
Guy Shechter (2006)
10.1080/10255840108908007
Finite-element Analysis of a Stenotic Artery Revascularization Through a Stent Insertion
Ferdinando Auricchio (2001)
10.1002/ccd.21371
Stent fracture, an incidental finding or a significant marker of clinical in-stent restenosis?
Fareed Shaikh (2008)
10.1002/ccd.10709
Stent fracture and restenosis in the drug-eluting stent era.
Georgios Sianos (2004)
Fatigue and fracture in materials used for microscale biomedical components
S Wiersma (2005)
10.1002/mawe.200600058
Ermüdung und Mikrostruktur von koronaren Stents
Sabrina Weiss (2006)
10.1016/j.crme.2005.12.002
Plasticity-damage based micromechanical modelling in high cycle fatigue
Vincent Monchiet (2006)
Accelerated pulsite fatigue testing of Ni–Ti coronary stents
R Glenn (1997)
10.1520/STP1438-EB
Stainless steels for medical and surgical applications
Gray L. Winters (2003)
10.1016/j.crme.2003.11.005
Critère de fatigue polycyclique pour des matériaux anisotropes : application aux monocristaux
Florian Cano (2004)
10.1016/J.JMPS.2013.01.001
The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation
Caoimhe A. Sweeney (2013)
Review of materials in medical applications
M. Brojan (2008)
10.1007/s10439-007-9326-6
Modeling of Size Dependent Failure in Cardiovascular Stent Struts under Tension and Bending
Frank Harewood (2007)
10.1016/S0142-1123(03)00147-6
An understanding of very high cycle fatigue of metals
I Marines (2003)
10.1016/J.IJFATIGUE.2010.11.006
A computational approach for the fatigue design of threaded connections
Mohamed Ferjani (2011)
10.1016/S0142-1123(01)00123-2
How and why the fatigue S–N curve does not approach a horizontal asymptote
Claude Bathias (2001)
10.1016/j.jbiomech.2008.01.027
On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method.
Francesca Gervaso (2008)
10.1007/s00380-009-1203-9
Fatigue life analysis and experimental verification of coronary stent
Jianjun Li (2009)
10.1016/j.jmbbm.2007.07.002
On the finite element modelling of balloon-expandable stents.
Feng Ju (2008)
10.1016/j.jmbbm.2012.12.008
Influence of statistical size effects on the plastic deformation of coronary stents.
James A. Grogan (2013)
10.1016/j.jmbbm.2012.06.011
Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity-damage model approach.
H A F Argente dos Santos (2012)
10.1016/j.biomaterials.2005.10.012
Fatigue and life prediction for cobalt-chromium stents: A fracture mechanics analysis.
Ramesh V. Marrey (2006)
10.1016/j.jbiomech.2009.10.024
Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation.
Silvia Schievano (2010)
10.1111/j.1460-2695.2005.00952.x
Fatigue of materials used in microscopic components
Susanne Amanda Wiersma (2005)
10.1016/J.IJFATIGUE.2012.04.022
Micromechanical methodology for fatigue in cardiovascular stents
Caoimhe A. Sweeney (2012)
10.1023/A:1018641414428
A two scale damage concept applied to fatigue
Jean Lemaitre (1999)
10.1016/S0021-9290(00)00098-1
Mechanical behaviour modelling of balloon-expandable stents.
Claude Dumoulin (2000)
10.1002/cnm.2557
Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration.
David Moral Martín (2013)
10.1136/hrt.2006.107052
Stent expansion: a combination of delivery balloon underexpansion and acute stent recoil reduces predicted stent diameter irrespective of reference vessel size
Shahid Aziz (2007)
On a New Multiaxial Fatigue Limit Criterion: Theory and Application
Ky Dang Van (2013)
10.1007/s10439-009-9836-5
A Novel Simulation Strategy for Stent Insertion and Deployment in Curved Coronary Bifurcations: Comparison of Three Drug-Eluting Stents
Peter Mortier (2009)
10.1016/j.ijfatigue.2007.01.007
Comparative assessment of dissipated energy and other fatigue criteria
Alexander M. Korsunsky (2007)
10.1016/j.jbiomech.2004.07.022
Cardiovascular stent design and vessel stresses: a finite element analysis.
Caitríona Lally (2005)
10.1016/j.commatsci.2004.05.001
Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling
J. Patrick McGarry (2004)
10.1002/MAWE.200800409
Fatigue and endurance of coronary stents
Sabrina Weiss (2009)
Fatigue and microstructure of coronary artery stents
S Weiss (2006)
10.1080/10255842.2012.713675
Fatigue life prediction of cardiovascular stent using finite element method
M. Azaouzi (2012)
10.1016/J.TAFMEC.2007.05.002
A multiscale approach of fatigue and shakedown for notched structures
G. Bertolino (2007)
10.1016/j.jbiomech.2006.03.001
Erratum to “Cardiovascular stent design and vessel stresses: A finite element analysis”
Caitríona Lally (2006)
10.1016/j.actamat.2006.06.021
A combined experimental and computational study of deformation in grains of biomedical grade 316LVM stainless steel
Xiaoling You (2006)
10.1111/j.1460-2695.2005.00951.x
A review of deformation and fatigue of metals at small size scales
Thomas Connolley (2005)
10.1016/J.IJFATIGUE.2010.10.009
Semianalytical solution for the stress distribution in notched tubes
Mohamed Ferjani (2011)
10.4236/MSA.2013.410075
Coronary Stents Fracture: An Engineering Approach (Review)
Bandar Almangour (2013)
10.1002/ccd.20950
Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation.
Jiro Aoki (2007)
10.1016/j.jmbbm.2008.12.008
Microstructural changes within similar coronary stents produced from two different austenitic steels.
Sabine Weiss (2009)
Fatigue and fracture in materials used for micro-scale biomedical components.
Susanne Amanda Wiersma (2006)
10.1016/j.jbiomech.2003.09.002
Numerical investigation of the intravascular coronary stent flexibility.
Lorenza Petrini (2004)
10.1016/J.IJFATIGUE.2014.04.013
Fatigue of 316L stainless steel notched μm-size components
Ferdinando Auricchio (2014)
10.1016/j.jbiomech.2014.01.007
Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement.
Stefano Morlacchi (2014)
10.1016/J.JBIOMECH.2007.08.014
Realistic finite element-based stent design: the impact of balloon folding.
Matthieu De Beule (2008)
10.1016/J.IJFATIGUE.2013.09.014
Micromechanical study of the loading path effect in high cycle fatigue
Raphaël Guerchais (2014)
High-cycle metal fatigue in the context of mechanical design
K. Dang Van (1999)
Geometry effect in the fatigue behaviour of microscale 316L stainless steel specimens
Evin Donnelly (2012)
10.1007/s10107-002-0347-5
Solving semidefinite-quadratic-linear programs using SDPT3
Reha H. Tütüncü (2003)
10.1016/j.biomaterials.2013.09.087
Experimental characterisation for micromechanical modelling of CoCr stent fatigue.
Caoimhe A. Sweeney (2014)
10.1016/j.jacc.2009.05.075
Incidence and predictors of drug-eluting stent fracture in human coronary artery a pathologic analysis.
Gaku Nakazawa (2009)
10.1155/2011/501483
Biomedical Applications of Shape Memory Alloys
Lorenza Petrini (2011)
10.1007/s10856-006-6323-5
The influence of grain size on the ductility of micro-scale stainless steel stent struts
Bryan Patrick Murphy (2006)
10.3390/ijms12074250
Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities
Maryam Moravej (2011)
10.2307/1527192
The Advanced Theory of Statistics
M. G. Kendall (1963)
10.1016/j.mechmat.2009.01.018
Dissipative aspects in high cycle fatigue
E. Charkaluk (2009)
10.1520/STP1365-EB
Cobalt-base alloys for biomedical applications
John A. Disegi (1999)
10.1080/10255842.2012.677442
On high-cycle fatigue of 316L stents
Olga Barrera (2014)
10.1142/S1756973709000037
AN INTEGRATED CRYSTAL PLASTICITY FE SYSTEM FOR MICROFORMING SIMULATION
Junwei Cao (2009)
10.1007/978-1-4020-6808-9
Fatigue of Structures and Materials
Jaap Schijve (2001)
10.1161/CIRCULATIONAHA.109.192667
Heart disease and stroke statistics--2010 update: a report from the American Heart Association.
Donald Lloyd-Jones (2010)
10.1142/S1756973709000220
A CRYSTAL PLASTICITY STUDY OF THE NECKING OF MICRO-FILMS UNDER TENSION
Shu-lan Wang (2009)
10.1061/(ASCE)0733-9399(1993)119:3(642.2)
Mechanics of Solid Materials
Jean Lemaitre (1990)
10.1503/cmaj.101078
Coronary stent fracture
Benjamin Hibbert (2011)



This paper is referenced by
10.1371/journal.pone.0224026
Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
Lisa Wiesent (2019)
10.1111/FFE.12831
Torsional fatigue with axial constant stress of oligo‐crystalline 316L stainless steel thin wire
Yun-Long Shen (2018)
10.1002/jbm.b.34290
The current trends of Mg alloys in biomedical applications-A review.
Usman Riaz (2018)
10.1007/s10439-015-1476-3
Structural Mechanics Predictions Relating to Clinical Coronary Stent Fracture in a 5 Year Period in FDA MAUDE Database
Kay Dee Furman Everett (2015)
10.1002/jbm.b.34605
Structural optimization and finite element analysis of poly-l-lactide acid coronary stent with improved radial strength and acute recoil rate.
Kai Song (2020)
10.1016/j.jmbbm.2018.09.003
Braided bioresorbable cardiovascular stents mechanically reinforced by axial runners.
Fan Zhao (2019)
10.1007/s10439-015-1447-8
Fatigue of Metallic Stents: From Clinical Evidence to Computational Analysis
Ferdinando Auricchio (2015)
10.1088/1757-899X/165/1/012003
Computational Analysis on Stent Geometries in Carotid Artery: A Review
Muhammad Sufyan Amir Paisal (2017)
10.1007/S40997-018-0206-5
Tissue Stresses in Stented Coronary Arteries with Different Geometries: Effect of the Relation Between Stent Length and Lesion Length
Xiang Shen (2019)
10.26896/1028-6861-2019-85-11-62-68
Device for determination of the fatigue durability of intravascular stents
Oleg A. Kashin (2019)
10.1016/J.ENGFAILANAL.2019.06.073
Computational fatigue assessment of mooring chains under tension loading
Imanol Martínez Pérez (2019)
10.1007/s10237-017-0948-9
An in silico biomechanical analysis of the stent–esophagus interaction
Mathias Peirlinck (2018)
10.1016/J.IJFATIGUE.2016.02.026
Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue
Raphaël Guerchais (2016)
10.1016/J.JMST.2019.07.007
Development of new endovascular stent-graft system for type B thoracic aortic dissection with finite element analysis and experimental verification
Zhou Xiao-chen (2019)
10.1098/rspa.2017.0670
Waves and fluid–solid interaction in stented blood vessels
S Frecentese (2018)
10.1007/s42452-019-1277-7
Free vibration analysis of infinitely long thick-walled hollow elliptical cylinder
Vahid Rabbani (2019)
10.1177/0954411919862400
Fatigue behavior of stent in tapered arteries: The role of arterial tapering and stent material
Xiang Shen (2019)
Semantic Scholar Logo Some data provided by SemanticScholar