Please confirm you are human
(

__Sign Up__for free to never see this)
← Back to Search

# Traveling Wave Solutions Of The Camassa-Holm Equation

J. Lenells

Published 2005 · Mathematics

All weak traveling wave solutions of the Camassa-Holm equation are classified. We show that, in addition to smooth solutions, there are a multitude of traveling waves with singularities: peakons, cuspons, stumpons, and composite waves.

This paper references

10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5

On the weak solutions to a shallow water equation

Zhouping Xin (2000)

10.1007/BFB0069806

Integrable systems and algebraic curves

H. Mckean (1979)

10.5802/AIF.1757

Existence of permanent and breaking waves for a shallow water equation: a geometric approach

A. Constantin (2000)

10.1007/978-1-4612-2434-1_5

A Plethora of Integrable Bi-Hamiltonian Equations

A. Fokas (1997)

10.1088/0305-4470/32/25/313

Camassa-Holm equation: transformation to deformed sinh-Gordon equations, cuspon and soliton solutions

R. Kraenkel (1999)

10.2991/jnmp.2003.10.3.1

On the Inverse Scattering Approach to the Camassa-Holm Equation

A. Constantin (2003)

10.1016/S0167-2789(01)00298-6

Orbital stability of solitary waves for a shallow water equation

A. Constantin (2001)

10.2307/3613000

Real And Abstract Analysis

E. Hewitt (1965)

Some tricks from the symmetry-toolbox for nonlinear equations

FuchssteinerBenno (1996)

10.1088/0305-4470/32/49/307

Soliton-cuspon interaction for the Camassa-Holm equation

M. C. Ferreira (1999)

10.2307/3617033

An Introduction to Analysis and Integration Theory

E. R. Phillips (1985)

10.1006/AIMA.1998.1768

Acoustic Scattering and the Extended Korteweg– de Vries Hierarchy

R. Beals (1998)

10.1017/S0022112001007224

Korteweg-de Vries and related models for water waves

A. H. Johnson (2002)

10.1016/S0065-2156(08)70254-0

A New Integrable Shallow Water Equation

R. Camassa (1994)

10.2991/jnmp.2002.9.4.2

The Scattering Approach for the Camassa–Holm equation

J. Lenells (2002)

10.2307/3611894

Real and complex analysis

W. Rudin (1966)

10.1006/JFAN.1997.3231

On the Inverse Spectral Problem for the Camassa–Holm Equation

A. Constantin (1998)

10.1155/S1073792804132431

Stability of periodic peakons

J. Lenells (2004)

10.1006/JDEQ.1997.3333

On the Cauchy Problem for the Periodic Camassa–Holm Equation

A. Constantin (1997)

10.1016/0167-2789(81)90004-X

Symplectic structures, their B?acklund transformation and hereditary symmetries

B. Fuchssteiner (1981)

10.1007/BF00739423

The geometry of peaked solitons and billiard solutions of a class of integrable PDE's

M. Alber (1994)

10.1007/BF02392586

Wave breaking for nonlinear nonlocal shallow water equations

A. Constantin (1998)

10.1088/0305-4470/35/32/201

TOPICAL REVIEW: On the geometric approach to the motion of inertial mechanical systems

A. Constantin (2002)

10.1088/0266-5611/15/1/001

Multi-peakons and a theorem of Stieltjes

R. Beals (1999)

10.1007/S00332-002-0517-X

Stability of the Camassa-Holm solitons

A. Constantin (2002)

10.1016/S0393-0440(97)00010-7

A shallow water equation as a geodesic flow on the Bott-Virasoro group

Gerard Misio łek (1998)

Global existence and blow-up for a shallow water equation

A. Constantin (1998)

10.5802/AIF.233

Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits

V. Arnold (1966)

Well-posedness

A. Constantin (1998)

10.1007/PL00004793

On the blow-up rate and the blow-up set of breaking waves for a shallow water equation

A. Constantin (2000)

10.1007/s003329910017

On the Blow-Up of Solutions of a Periodic Shallow Water Equation

A. Constantin (2000)

10.1016/S0169-5983(03)00036-4

The Camassa-Holm equation for water waves moving over a shear flow

R. Johnson (2003)

A few remarks on the Camassa-Holm equation

R. Danchin (2001)

10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5

Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation

A. Constantin (1998)

10.4310/AJM.1998.V2.N4.A10

Breakdown of a shallow water equation

H. Mckean (1998)

10.1007/S00014-003-0785-6

Geodesic flow on the diffeomorphism group of the circle

A. Constantin (2003)

10.2991/jnmp.2004.11.2.2

A Variational Approach to the Stability of Periodic Peakons

J. Lenells (2004)

10.1007/978-3-642-61497-2

The analysis of linear partial differential operators

Lars Hörmander (1990)

10.1112/blms/20.4.375

PARTIAL DIFFERENTIAL EQUATIONS

W. Evans (1941)

10.2991/jnmp.2003.10.s1.6

The Classical Problem of Water Waves: a Reservoir of Integrable and Nearly-Integrable Equations

R. Johnson (2003)

10.3934/DCDS.1997.3.419

Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system

Y. Li (1996)

10.1103/PHYSREVLETT.71.1661

An integrable shallow water equation with peaked solitons.

Camassa (1993)

10.1098/rspa.2000.0701

On the scattering problem for the Camassa-Holm equation

A. Constantin (2001)

The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis

L. H. Rmander (1983)

10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L

Stability of peakons

A. Constantin (2000)

10.1016/0167-2789(96)00048-6

Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation

B. Fuchssteiner (1996)

10.1006/JDEQ.1999.3683

Well-posedness and Blow-up Solutions for an Integrable Nonlinearly Dispersive Model Wave Equation

Y. Li (2000)

10.1016/0167-2789(95)00133-O

On a class of physically important integrable equations

A. S. Fokas (1994)

10.1098/rspa.2002.1078

On solutions of the Camassa-Holm equation

R. Johnson (2003)

10.1007/BF01170373

Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod

H. Dai (1998)

10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D

A shallow water equation on the circle

A. Constantin (1999)

This paper is referenced by

10.1137/16M1073005

Breaking Waves And Solitary Waves To The Rotation-Two-Component Camassa-Holm System

R. Chen (2017)

10.1016/J.WAVEMOTI.2017.05.006

Classification of traveling wave solutions to the Green–Naghdi model

B. Jiang (2017)

10.11650/TJM.16.2012.2631

NEW EXACT SOLUTIONS TO THE MODIFIED FORNBERG-WHITHAM EQUATION

Ameina S. Nuseir (2012)

10.1088/1751-8113/42/5/055203

Multi-soliton and multi-cuspon solutions of a Camassa–Holm hierarchy and their interactions

H. Dai (2009)

10.1080/00036811.2015.1134784

Curvature computations for a two-component Camassa-Holm equation with vorticity

M. Kohlmann (2015)

10.1016/J.NA.2010.12.002

Global existence for the higher-order CamassaHolm shallow water equation

L. Tian (2011)

10.1007/s11071-020-05868-0

Bifurcations and exact solutions of an asymptotic rotation-Camassa–Holm equation

Jianli Liang (2020)

10.1063/1.3407598

Stability of negative solitary waves for an integrable modified Camassa–Holm equation

J. Yin (2010)

10.1007/S12043-013-0507-6

Double compactons in the Olver–Rosenau equation

A. Chen (2013)

10.4208/AAMM.2015.M1248

Bifurcations and Single Peak Solitary Wave Solutions of an Integrable Nonlinear Wave Equation

Wei Wang (2016)

10.1063/1.4736845

The dual modified Korteweg-de Vries-Fokas-Qiao equation: Geometry and local analysis

Piotr Michał Bies (2012)

10.3934/DCDS.2007.19.545

Conformal and Geometric Properties of the Camassa-Holm Hierarchy

R. Ivanov (2007)

10.1137/17M1151201

Construction of 2-Peakon Solutions and Ill-Posedness for the Novikov Equation

A. Himonas (2018)

10.1016/j.na.2020.111849

Well-posedness of a highly nonlinear shallow water equation on the circle

N. D. Mutlubaş (2020)

10.1007/s00332-006-0803-3

Formation and Dynamics of Shock Waves in the Degasperis-Procesi Equation

Hans Lundmark (2007)

10.1016/J.JMAA.2019.05.046

Global solutions and blow-up phenomena for a generalized Degasperis–Procesi equation

M. Li (2019)

Some distributional solutions of the CH, DP and CH2 equations and the Lax pair formalism

Keivan Mohajer (2008)

10.1016/j.chaos.2020.109802

Collision of solitons in non-integrable versions of the Degasperis-Procesi model

G. Omel'yanov (2020)

10.1080/00036811.2013.853290

Single peak solitary wave solutions for the generalized Camassa–Holm equation

H. Li (2014)

10.1007/S10884-006-9009-2

Classification of Traveling Waves for a Class of Nonlinear Wave Equations

J. Lenells (2006)

10.1088/1751-8113/43/9/095205

Existence of weak solutions in lower order Sobolev space for a Camassa?Holm-type equation

S. Lai (2010)

10.3934/DCDS.2017139

Local well-posedness of the Camassa-Holm equation on the real line

J. Lee (2016)

10.1080/03605302.2011.556695

Stability of Solitary Waves and Global Existence of a Generalized Two-Component Camassa–Holm System

R. Chen (2011)

10.1088/0253-6102/54/2/18

Cusped Solitons and Loop-Solitons of Reduced Ostrovsky Equation

Chen Ai-yong (2010)

10.1016/J.NONRWA.2012.09.014

Butterfly-like waves in the nonlinear Schrödinger equation with a combined dispersion term

J. Yin (2013)

Cusp solitons of the Degasperis-Procesi equation

G. Zhang (2010)

10.1142/S0218127416501728

Exact Traveling Wave Solutions and Bifurcations for a Shallow Water Equation Modeling Surface Waves of Moderate Amplitude

Wenjing Zhu (2016)

10.1002/MANA.201200243

The Cauchy problem for the generalized hyperelastic rod wave equation

ChangAn Tian (2014)

10.1016/J.JMAA.2008.01.039

Single and multi-solitary wave solutions to a class of nonlinear evolution equations

D. Wang (2008)

10.1016/J.JFA.2010.06.007

Initial boundary value problem and asymptotic stabilization of the Camassa-Holm equation on an interval

V. Perrollaz (2010)

10.1016/J.JDE.2015.02.015

Single peak solitary wave solutions for the CH-KP(2,1) equation under boundary condition☆

M. Wei (2015)

10.1016/J.NONRWA.2018.08.008

Continuity properties of the data-to-solution map for the two-component higher order Camassa-Holm system

F. Wang (2018)

See more