Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Traveling Wave Solutions Of The Camassa-Holm Equation

J. Lenells
Published 2005 · Mathematics

Save to my Library
Download PDF
Analyze on Scholarcy
Share
All weak traveling wave solutions of the Camassa-Holm equation are classified. We show that, in addition to smooth solutions, there are a multitude of traveling waves with singularities: peakons, cuspons, stumpons, and composite waves.
This paper references
10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
On the weak solutions to a shallow water equation
Zhouping Xin (2000)
10.1007/BFB0069806
Integrable systems and algebraic curves
H. Mckean (1979)
10.5802/AIF.1757
Existence of permanent and breaking waves for a shallow water equation: a geometric approach
A. Constantin (2000)
10.1007/978-1-4612-2434-1_5
A Plethora of Integrable Bi-Hamiltonian Equations
A. Fokas (1997)
10.1088/0305-4470/32/25/313
Camassa-Holm equation: transformation to deformed sinh-Gordon equations, cuspon and soliton solutions
R. Kraenkel (1999)
10.2991/jnmp.2003.10.3.1
On the Inverse Scattering Approach to the Camassa-Holm Equation
A. Constantin (2003)
10.1016/S0167-2789(01)00298-6
Orbital stability of solitary waves for a shallow water equation
A. Constantin (2001)
10.2307/3613000
Real And Abstract Analysis
E. Hewitt (1965)
Some tricks from the symmetry-toolbox for nonlinear equations
FuchssteinerBenno (1996)
10.1088/0305-4470/32/49/307
Soliton-cuspon interaction for the Camassa-Holm equation
M. C. Ferreira (1999)
10.2307/3617033
An Introduction to Analysis and Integration Theory
E. R. Phillips (1985)
10.1006/AIMA.1998.1768
Acoustic Scattering and the Extended Korteweg– de Vries Hierarchy
R. Beals (1998)
10.1017/S0022112001007224
Korteweg-de Vries and related models for water waves
A. H. Johnson (2002)
10.1016/S0065-2156(08)70254-0
A New Integrable Shallow Water Equation
R. Camassa (1994)
10.2991/jnmp.2002.9.4.2
The Scattering Approach for the Camassa–Holm equation
J. Lenells (2002)
10.2307/3611894
Real and complex analysis
W. Rudin (1966)
10.1006/JFAN.1997.3231
On the Inverse Spectral Problem for the Camassa–Holm Equation
A. Constantin (1998)
10.1155/S1073792804132431
Stability of periodic peakons
J. Lenells (2004)
10.1006/JDEQ.1997.3333
On the Cauchy Problem for the Periodic Camassa–Holm Equation
A. Constantin (1997)
10.1016/0167-2789(81)90004-X
Symplectic structures, their B?acklund transformation and hereditary symmetries
B. Fuchssteiner (1981)
10.1007/BF00739423
The geometry of peaked solitons and billiard solutions of a class of integrable PDE's
M. Alber (1994)
10.1007/BF02392586
Wave breaking for nonlinear nonlocal shallow water equations
A. Constantin (1998)
10.1088/0305-4470/35/32/201
TOPICAL REVIEW: On the geometric approach to the motion of inertial mechanical systems
A. Constantin (2002)
10.1088/0266-5611/15/1/001
Multi-peakons and a theorem of Stieltjes
R. Beals (1999)
10.1007/S00332-002-0517-X
Stability of the Camassa-Holm solitons
A. Constantin (2002)
10.1016/S0393-0440(97)00010-7
A shallow water equation as a geodesic flow on the Bott-Virasoro group
Gerard Misio łek (1998)
Global existence and blow-up for a shallow water equation
A. Constantin (1998)
10.5802/AIF.233
Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits
V. Arnold (1966)
Well-posedness
A. Constantin (1998)
10.1007/PL00004793
On the blow-up rate and the blow-up set of breaking waves for a shallow water equation
A. Constantin (2000)
10.1007/s003329910017
On the Blow-Up of Solutions of a Periodic Shallow Water Equation
A. Constantin (2000)
10.1016/S0169-5983(03)00036-4
The Camassa-Holm equation for water waves moving over a shear flow
R. Johnson (2003)
A few remarks on the Camassa-Holm equation
R. Danchin (2001)
10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation
A. Constantin (1998)
10.4310/AJM.1998.V2.N4.A10
Breakdown of a shallow water equation
H. Mckean (1998)
10.1007/S00014-003-0785-6
Geodesic flow on the diffeomorphism group of the circle
A. Constantin (2003)
10.2991/jnmp.2004.11.2.2
A Variational Approach to the Stability of Periodic Peakons
J. Lenells (2004)
10.1007/978-3-642-61497-2
The analysis of linear partial differential operators
Lars Hörmander (1990)
10.1112/blms/20.4.375
PARTIAL DIFFERENTIAL EQUATIONS
W. Evans (1941)
10.2991/jnmp.2003.10.s1.6
The Classical Problem of Water Waves: a Reservoir of Integrable and Nearly-Integrable Equations
R. Johnson (2003)
10.3934/DCDS.1997.3.419
Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system
Y. Li (1996)
10.1103/PHYSREVLETT.71.1661
An integrable shallow water equation with peaked solitons.
Camassa (1993)
10.1098/rspa.2000.0701
On the scattering problem for the Camassa-Holm equation
A. Constantin (2001)
The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis
L. H. Rmander (1983)
10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
Stability of peakons
A. Constantin (2000)
10.1016/0167-2789(96)00048-6
Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation
B. Fuchssteiner (1996)
10.1006/JDEQ.1999.3683
Well-posedness and Blow-up Solutions for an Integrable Nonlinearly Dispersive Model Wave Equation
Y. Li (2000)
10.1016/0167-2789(95)00133-O
On a class of physically important integrable equations
A. S. Fokas (1994)
10.1098/rspa.2002.1078
On solutions of the Camassa-Holm equation
R. Johnson (2003)
10.1007/BF01170373
Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod
H. Dai (1998)
10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
A shallow water equation on the circle
A. Constantin (1999)



This paper is referenced by
10.1137/16M1073005
Breaking Waves And Solitary Waves To The Rotation-Two-Component Camassa-Holm System
R. Chen (2017)
10.1016/J.WAVEMOTI.2017.05.006
Classification of traveling wave solutions to the Green–Naghdi model
B. Jiang (2017)
10.11650/TJM.16.2012.2631
NEW EXACT SOLUTIONS TO THE MODIFIED FORNBERG-WHITHAM EQUATION
Ameina S. Nuseir (2012)
10.1088/1751-8113/42/5/055203
Multi-soliton and multi-cuspon solutions of a Camassa–Holm hierarchy and their interactions
H. Dai (2009)
10.1080/00036811.2015.1134784
Curvature computations for a two-component Camassa-Holm equation with vorticity
M. Kohlmann (2015)
10.1016/J.NA.2010.12.002
Global existence for the higher-order CamassaHolm shallow water equation
L. Tian (2011)
10.1007/s11071-020-05868-0
Bifurcations and exact solutions of an asymptotic rotation-Camassa–Holm equation
Jianli Liang (2020)
10.1063/1.3407598
Stability of negative solitary waves for an integrable modified Camassa–Holm equation
J. Yin (2010)
10.1007/S12043-013-0507-6
Double compactons in the Olver–Rosenau equation
A. Chen (2013)
10.4208/AAMM.2015.M1248
Bifurcations and Single Peak Solitary Wave Solutions of an Integrable Nonlinear Wave Equation
Wei Wang (2016)
10.1063/1.4736845
The dual modified Korteweg-de Vries-Fokas-Qiao equation: Geometry and local analysis
Piotr Michał Bies (2012)
10.3934/DCDS.2007.19.545
Conformal and Geometric Properties of the Camassa-Holm Hierarchy
R. Ivanov (2007)
10.1137/17M1151201
Construction of 2-Peakon Solutions and Ill-Posedness for the Novikov Equation
A. Himonas (2018)
10.1016/j.na.2020.111849
Well-posedness of a highly nonlinear shallow water equation on the circle
N. D. Mutlubaş (2020)
10.1007/s00332-006-0803-3
Formation and Dynamics of Shock Waves in the Degasperis-Procesi Equation
Hans Lundmark (2007)
10.1016/J.JMAA.2019.05.046
Global solutions and blow-up phenomena for a generalized Degasperis–Procesi equation
M. Li (2019)
Some distributional solutions of the CH, DP and CH2 equations and the Lax pair formalism
Keivan Mohajer (2008)
10.1016/j.chaos.2020.109802
Collision of solitons in non-integrable versions of the Degasperis-Procesi model
G. Omel'yanov (2020)
10.1080/00036811.2013.853290
Single peak solitary wave solutions for the generalized Camassa–Holm equation
H. Li (2014)
10.1007/S10884-006-9009-2
Classification of Traveling Waves for a Class of Nonlinear Wave Equations
J. Lenells (2006)
10.1088/1751-8113/43/9/095205
Existence of weak solutions in lower order Sobolev space for a Camassa?Holm-type equation
S. Lai (2010)
10.3934/DCDS.2017139
Local well-posedness of the Camassa-Holm equation on the real line
J. Lee (2016)
10.1080/03605302.2011.556695
Stability of Solitary Waves and Global Existence of a Generalized Two-Component Camassa–Holm System
R. Chen (2011)
10.1088/0253-6102/54/2/18
Cusped Solitons and Loop-Solitons of Reduced Ostrovsky Equation
Chen Ai-yong (2010)
10.1016/J.NONRWA.2012.09.014
Butterfly-like waves in the nonlinear Schrödinger equation with a combined dispersion term
J. Yin (2013)
Cusp solitons of the Degasperis-Procesi equation
G. Zhang (2010)
10.1142/S0218127416501728
Exact Traveling Wave Solutions and Bifurcations for a Shallow Water Equation Modeling Surface Waves of Moderate Amplitude
Wenjing Zhu (2016)
10.1002/MANA.201200243
The Cauchy problem for the generalized hyperelastic rod wave equation
ChangAn Tian (2014)
10.1016/J.JMAA.2008.01.039
Single and multi-solitary wave solutions to a class of nonlinear evolution equations
D. Wang (2008)
10.1016/J.JFA.2010.06.007
Initial boundary value problem and asymptotic stabilization of the Camassa-Holm equation on an interval
V. Perrollaz (2010)
10.1016/J.JDE.2015.02.015
Single peak solitary wave solutions for the CH-KP(2,1) equation under boundary condition☆
M. Wei (2015)
10.1016/J.NONRWA.2018.08.008
Continuity properties of the data-to-solution map for the two-component higher order Camassa-Holm system
F. Wang (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar