Online citations, reference lists, and bibliographies.
← Back to Search

Global Weak Solutions For The Dullin–Gottwald–Holm Equation

S. Zhang, Z. Yin
Published 2010 · Mathematics

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Abstract We prove the existence and uniqueness of global weak solutions to the Dullin–Gottwald–Holm equation provided the initial data satisfies certain conditions.
This paper references
10.1103/PHYSREVLETT.71.1661
An integrable shallow water equation with peaked solitons.
Camassa (1993)
10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
Stability of peakons
A. Constantin (2000)
10.3934/DCDS.2004.11.393
Well-posedness, blowup, and global existence for an integrable shallow water equation
Z. Yin (2004)
10.1016/S0022-0396(03)00096-2
A note on well-posedness for Camassa-Holm equation
R. Danchin (2003)
10.1080/03605300601088674
Global Conservative Solutions of the Camassa–Holm Equation—A Lagrangian Point of View
H. Holden (2007)
10.1142/S0219530507000857
GLOBAL DISSIPATIVE SOLUTIONS OF THE CAMASSA–HOLM EQUATION
A. Bressan (2007)
10.1007/S00220-006-1532-9
Existence and Uniqueness of Low Regularity Solutions for the Dullin-Gottwald-Holm Equation
O. Mustafa (2006)
10.3934/DCDS.2009.24.1047
Dissipative solutions for the Camassa-Holm equation
H. Holden (2009)
10.1103/PhysRevLett.87.194501
An integrable shallow water equation with linear and nonlinear dispersion.
H. Dullin (2001)
10.1007/BFB0067080
Quasi-linear equations of evolution, with applications to partial differential equations
T. Kato (1975)
A few remarks on the Camassa-Holm equation
R. Danchin (2001)
10.1016/S0375-9601(00)00255-3
Stability of a class of solitary waves in compressible elastic rods
A. Constantin (2000)
10.1038/07500xa0
Partial Differential Equations
G. M. (1907)
10.1155/IMRN/2006/28976
Global existence of weak solutions to the Camassa-Holm equation
E. Wahlén (2006)
10.1016/J.JFA.2007.04.019
Blow-up of solutions to the DGH equation
Y. Zhou (2007)
10.1016/S0065-2156(08)70254-0
A New Integrable Shallow Water Equation
R. Camassa (1994)
10.1007/S00332-002-0517-X
Stability of the Camassa-Holm solitons
A. Constantin (2002)
10.1007/BF02392586
Wave breaking for nonlinear nonlocal shallow water equations
A. Constantin (1998)
10.1007/S00220-005-1356-Z
On the Well-Posedness Problem and the Scattering Problem for the Dullin-Gottwald-Holm Equation
L. Tian (2005)
10.1007/PL00004793
On the blow-up rate and the blow-up set of breaking waves for a shallow water equation
A. Constantin (2000)
10.1006/AIMA.1998.1768
Acoustic Scattering and the Extended Korteweg– de Vries Hierarchy
R. Beals (1998)
10.1016/S0393-0440(97)00010-7
A shallow water equation as a geodesic flow on the Bott-Virasoro group
Gerard Misio łek (1998)
10.1007/BF01170373
Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod
H. Dai (1998)
10.1098/rspa.2002.1078
On solutions of the Camassa-Holm equation
R. Johnson (2003)
10.2307/3610997
Theory of Functions of a Real Variable
I. Natanson (1955)
10.1007/978-1-4899-6824-1
Weak and Measure-Valued Solutions to Evolutionary PDEs
J. Málek (1996)
10.1063/1.2978335
On the blow-up phenomena of the periodic Dullin–Gottwald–Holm equation
S. Zhang (2008)
10.1115/1.3423786
Linear and Nonlinear Waves
G. Whitham (1974)
10.1016/0167-2789(81)90004-X
Symplectic structures, their B?acklund transformation and hereditary symmetries
B. Fuchssteiner (1981)
10.1007/S002200050801
Global Weak Solutions for a Shallow Water Equation
A. Constantin (2000)
10.3934/DCDS.2007.19.575
Global conservative solutions of the Dullin-Gottwald-Holm equation
O. Mustafa (2007)
The Cauchy problem for an integrable shallow-water equation
A. Himonas (2001)
10.1007/BFB0069806
Integrable systems and algebraic curves
H. Mckean (1979)
10.1081/PDE-120016129
ON THE UNIQUENESS AND LARGE TIME BEHAVIOR OF THE WEAK SOLUTIONS TO A SHALLOW WATER EQUATION
Z. Xin (2002)
Low-regularity global solutions to nonlinear dispersive equations
T. Tao (2002)
10.1006/JDEQ.1999.3683
Well-posedness and Blow-up Solutions for an Integrable Nonlinearly Dispersive Model Wave Equation
Y. Li (2000)
Global existence and blow-up for a shallow water equation
A. Constantin (1998)
10.1007/S00205-006-0010-Z
Global Conservative Solutions of the Camassa–Holm Equation
A. Bressan (2007)
10.1098/rspa.2000.0701
On the scattering problem for the Camassa-Holm equation
A. Constantin (2001)
10.1080/03605300802501715
Global Dissipative Multipeakon Solutions of the Camassa–Holm Equation
H. Holden (2008)
10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
On the weak solutions to a shallow water equation
Z. Xin (2000)
10.1007/S00014-003-0785-6
Geodesic flow on the diffeomorphism group of the circle
A. Constantin (2003)
10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation
A. Constantin (1998)
10.1017/S0022112001007224
Korteweg-de Vries and related models for water waves
A. H. Johnson (2002)
10.1016/S0362-546X(01)00791-X
On the Cauchy problem for the Camassa-Holm equation
Guillermo Rodríguez-Blanco (2001)
10.1002/CPA.3160460405
Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle
C. Kenig (1993)
10.1142/S0219891607001045
GLOBAL CONSERVATIVE MULTIPEAKON SOLUTIONS OF THE CAMASSA–HOLM EQUATION
H. Holden (2007)
10.5802/AIF.1757
Existence of permanent and breaking waves for a shallow water equation: a geometric approach
A. Constantin (2000)
10.1007/S00208-006-0768-1
Global existence and blow-up solutions for a nonlinear shallow water equation
Y. Liu (2006)
10.1088/0305-4470/38/4/007
Conservation laws of the Camassa–Holm equation
J. Lenells (2005)
10.1007/978-3-540-75712-2_35
Global Weak Solutions for a Shallow Water Equation
G. Coclite (2008)



This paper is referenced by
10.1016/j.aml.2020.106307
Blow-up of solutions to a modified two-component Dullin-Gottwald-Holm system
W. Cheng (2020)
10.1016/J.NA.2013.04.008
Local well-posedness and stability of solitary waves for the two-component Dullin–Gottwald–Holm system
Xingxing Liu (2013)
10.1186/1687-2770-2012-52
Blow-up and local weak solution for a modified two-component Camassa-Holm equations
L. Tian (2012)
10.1016/j.amc.2010.05.085
1-Soliton solution and conservation laws of the generalizedDullin-Gottwald-Holm equation
A. Biswas (2010)
10.1186/1687-2770-2013-26
The existence of global weak solutions for a weakly dissipative Camassa-Holm equation in H1(R)
S. Lai (2013)
10.1016/J.NONRWA.2012.02.007
Orbital stability of the sum of N peakons for the Dullin–Gottwald–Holm equation
Xingxing Liu (2012)
10.1016/J.CHAOS.2017.10.027
Global stability of an epidemic model with age-dependent vaccination, latent and relapse
Y. Li (2017)
10.1016/J.NONRWA.2012.03.004
On the solutions of the Dullin–Gottwald–Holm equation in Besov spaces
K. Yan (2012)
10.1186/1687-2770-2013-158
Blow-up phenomena and global existence for the periodic two-component Dullin-Gottwald-Holm system
J. Liu (2012)
10.1007/s00605-020-01411-w
Local-in-space blow-up and symmetry of traveling wave solutions to a generalized two-component Dullin–Gottwald–Holm system
Wen-guang Cheng (2020)
10.1016/J.NA.2010.12.005
Local well-posedness and stability of peakons for a generalized Dullin–Gottwald–Holm equation
Xingxing Liu (2011)
10.1080/00036811.2015.1055730
The Cauchy problem for a family of generalized Camassa–Holm equations
X. Tu (2016)
Weak Solution and Blow-up for a Modified Two-component DGH Equation
M. Zhu (2012)
10.1080/00036811.2013.854331
The Cauchy problem for a generalized Dullin–Gottwald–Holm equation in Besov spaces
Rong Chen (2014)
10.1002/MMA.4826
Classical symmetries and conservation laws for the dissipative Dullin‐Gottwald‐Holm equation with arbitrary coefficients
J. Camacho (2018)
The multiple soliton and peakon solutions of the Dullin-Gottwald-Holm equation
Qilao Zha (2016)
10.1016/J.PHYSLETA.2013.03.031
Peakon–antipeakon interaction in the Dullin–Gottwald–Holm equation
Jiangbo Zhou (2013)
10.1186/S13661-014-0203-6
Global weak solutions for a generalized Dullin-Gottwald-Holm equation in the space H1(R)
S. Lai (2014)
10.1002/MMA.3225
Global existence of weak solutions to a weakly dissipative modified two-component Dullin-Gottwald-Holm system
F. Wang (2015)
Semantic Scholar Logo Some data provided by SemanticScholar