← Back to Search

# Global Weak Solutions For The Dullin–Gottwald–Holm Equation

S. Zhang, Z. Yin

Published 2010 · Mathematics

Abstract We prove the existence and uniqueness of global weak solutions to the Dullin–Gottwald–Holm equation provided the initial data satisfies certain conditions.

This paper references

10.1103/PHYSREVLETT.71.1661

An integrable shallow water equation with peaked solitons.

Camassa (1993)

10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L

Stability of peakons

A. Constantin (2000)

10.3934/DCDS.2004.11.393

Well-posedness, blowup, and global existence for an integrable shallow water equation

Z. Yin (2004)

10.1016/S0022-0396(03)00096-2

A note on well-posedness for Camassa-Holm equation

R. Danchin (2003)

10.1080/03605300601088674

Global Conservative Solutions of the Camassa–Holm Equation—A Lagrangian Point of View

H. Holden (2007)

10.1142/S0219530507000857

GLOBAL DISSIPATIVE SOLUTIONS OF THE CAMASSA–HOLM EQUATION

A. Bressan (2007)

10.1007/S00220-006-1532-9

Existence and Uniqueness of Low Regularity Solutions for the Dullin-Gottwald-Holm Equation

O. Mustafa (2006)

10.3934/DCDS.2009.24.1047

Dissipative solutions for the Camassa-Holm equation

H. Holden (2009)

10.1103/PhysRevLett.87.194501

An integrable shallow water equation with linear and nonlinear dispersion.

H. Dullin (2001)

10.1007/BFB0067080

Quasi-linear equations of evolution, with applications to partial differential equations

T. Kato (1975)

A few remarks on the Camassa-Holm equation

R. Danchin (2001)

10.1016/S0375-9601(00)00255-3

Stability of a class of solitary waves in compressible elastic rods

A. Constantin (2000)

10.1038/07500xa0

Partial Differential Equations

G. M. (1907)

10.1155/IMRN/2006/28976

Global existence of weak solutions to the Camassa-Holm equation

E. Wahlén (2006)

10.1016/J.JFA.2007.04.019

Blow-up of solutions to the DGH equation

Y. Zhou (2007)

10.1016/S0065-2156(08)70254-0

A New Integrable Shallow Water Equation

R. Camassa (1994)

10.1007/S00332-002-0517-X

Stability of the Camassa-Holm solitons

A. Constantin (2002)

10.1007/BF02392586

Wave breaking for nonlinear nonlocal shallow water equations

A. Constantin (1998)

10.1007/S00220-005-1356-Z

On the Well-Posedness Problem and the Scattering Problem for the Dullin-Gottwald-Holm Equation

L. Tian (2005)

10.1007/PL00004793

On the blow-up rate and the blow-up set of breaking waves for a shallow water equation

A. Constantin (2000)

10.1006/AIMA.1998.1768

Acoustic Scattering and the Extended Korteweg– de Vries Hierarchy

R. Beals (1998)

10.1016/S0393-0440(97)00010-7

A shallow water equation as a geodesic flow on the Bott-Virasoro group

Gerard Misio łek (1998)

10.1007/BF01170373

Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod

H. Dai (1998)

10.1098/rspa.2002.1078

On solutions of the Camassa-Holm equation

R. Johnson (2003)

10.2307/3610997

Theory of Functions of a Real Variable

I. Natanson (1955)

10.1007/978-1-4899-6824-1

Weak and Measure-Valued Solutions to Evolutionary PDEs

J. Málek (1996)

10.1063/1.2978335

On the blow-up phenomena of the periodic Dullin–Gottwald–Holm equation

S. Zhang (2008)

10.1115/1.3423786

Linear and Nonlinear Waves

G. Whitham (1974)

10.1016/0167-2789(81)90004-X

Symplectic structures, their B?acklund transformation and hereditary symmetries

B. Fuchssteiner (1981)

10.1007/S002200050801

Global Weak Solutions for a Shallow Water Equation

A. Constantin (2000)

10.3934/DCDS.2007.19.575

Global conservative solutions of the Dullin-Gottwald-Holm equation

O. Mustafa (2007)

The Cauchy problem for an integrable shallow-water equation

A. Himonas (2001)

10.1007/BFB0069806

Integrable systems and algebraic curves

H. Mckean (1979)

10.1081/PDE-120016129

ON THE UNIQUENESS AND LARGE TIME BEHAVIOR OF THE WEAK SOLUTIONS TO A SHALLOW WATER EQUATION

Z. Xin (2002)

Low-regularity global solutions to nonlinear dispersive equations

T. Tao (2002)

10.1006/JDEQ.1999.3683

Well-posedness and Blow-up Solutions for an Integrable Nonlinearly Dispersive Model Wave Equation

Y. Li (2000)

Global existence and blow-up for a shallow water equation

A. Constantin (1998)

10.1007/S00205-006-0010-Z

Global Conservative Solutions of the Camassa–Holm Equation

A. Bressan (2007)

10.1098/rspa.2000.0701

On the scattering problem for the Camassa-Holm equation

A. Constantin (2001)

10.1080/03605300802501715

Global Dissipative Multipeakon Solutions of the Camassa–Holm Equation

H. Holden (2008)

10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5

On the weak solutions to a shallow water equation

Z. Xin (2000)

10.1007/S00014-003-0785-6

Geodesic flow on the diffeomorphism group of the circle

A. Constantin (2003)

10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5

Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation

A. Constantin (1998)

10.1017/S0022112001007224

Korteweg-de Vries and related models for water waves

A. H. Johnson (2002)

10.1016/S0362-546X(01)00791-X

On the Cauchy problem for the Camassa-Holm equation

Guillermo Rodríguez-Blanco (2001)

10.1002/CPA.3160460405

Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle

C. Kenig (1993)

10.1142/S0219891607001045

GLOBAL CONSERVATIVE MULTIPEAKON SOLUTIONS OF THE CAMASSA–HOLM EQUATION

H. Holden (2007)

10.5802/AIF.1757

Existence of permanent and breaking waves for a shallow water equation: a geometric approach

A. Constantin (2000)

10.1007/S00208-006-0768-1

Global existence and blow-up solutions for a nonlinear shallow water equation

Y. Liu (2006)

10.1088/0305-4470/38/4/007

Conservation laws of the Camassa–Holm equation

J. Lenells (2005)

10.1007/978-3-540-75712-2_35

Global Weak Solutions for a Shallow Water Equation

G. Coclite (2008)

This paper is referenced by

10.1016/j.aml.2020.106307

Blow-up of solutions to a modified two-component Dullin-Gottwald-Holm system

W. Cheng (2020)

10.1016/J.NA.2013.04.008

Local well-posedness and stability of solitary waves for the two-component Dullin–Gottwald–Holm system

Xingxing Liu (2013)

10.1186/1687-2770-2012-52

Blow-up and local weak solution for a modified two-component Camassa-Holm equations

L. Tian (2012)

10.1016/j.amc.2010.05.085

1-Soliton solution and conservation laws of the generalizedDullin-Gottwald-Holm equation

A. Biswas (2010)

10.1186/1687-2770-2013-26

The existence of global weak solutions for a weakly dissipative Camassa-Holm equation in H1(R)

S. Lai (2013)

10.1016/J.NONRWA.2012.02.007

Orbital stability of the sum of N peakons for the Dullin–Gottwald–Holm equation

Xingxing Liu (2012)

10.1016/J.CHAOS.2017.10.027

Global stability of an epidemic model with age-dependent vaccination, latent and relapse

Y. Li (2017)

10.1016/J.NONRWA.2012.03.004

On the solutions of the Dullin–Gottwald–Holm equation in Besov spaces

K. Yan (2012)

10.1186/1687-2770-2013-158

Blow-up phenomena and global existence for the periodic two-component Dullin-Gottwald-Holm system

J. Liu (2012)

10.1007/s00605-020-01411-w

Local-in-space blow-up and symmetry of traveling wave solutions to a generalized two-component Dullin–Gottwald–Holm system

Wen-guang Cheng (2020)

10.1016/J.NA.2010.12.005

Local well-posedness and stability of peakons for a generalized Dullin–Gottwald–Holm equation

Xingxing Liu (2011)

10.1080/00036811.2015.1055730

The Cauchy problem for a family of generalized Camassa–Holm equations

X. Tu (2016)

Weak Solution and Blow-up for a Modified Two-component DGH Equation

M. Zhu (2012)

10.1080/00036811.2013.854331

The Cauchy problem for a generalized Dullin–Gottwald–Holm equation in Besov spaces

Rong Chen (2014)

10.1002/MMA.4826

Classical symmetries and conservation laws for the dissipative Dullin‐Gottwald‐Holm equation with arbitrary coefficients

J. Camacho (2018)

The multiple soliton and peakon solutions of the Dullin-Gottwald-Holm equation

Qilao Zha (2016)

10.1016/J.PHYSLETA.2013.03.031

Peakon–antipeakon interaction in the Dullin–Gottwald–Holm equation

Jiangbo Zhou (2013)

10.1186/S13661-014-0203-6

Global weak solutions for a generalized Dullin-Gottwald-Holm equation in the space H1(R)

S. Lai (2014)

10.1002/MMA.3225

Global existence of weak solutions to a weakly dissipative modified two-component Dullin-Gottwald-Holm system

F. Wang (2015)