Online citations, reference lists, and bibliographies.
← Back to Search

CO Adsorption On Cu(111) And Cu(001) Surfaces: Improving Site Preference In DFT Calculations

M. Gajdoš, J. Hafner
Published 2005 · Physics, Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
Abstract CO adsorption on Cu(1 1 1) and Cu(0 0 1) surfaces has been studied within ab initio density functional theory (DFT). The structural, vibrational and thermodynamic properties of the adsorbate–substrate complex have been calculated. Calculations within the generalized gradient approximation (GGA) predict adsorption in the threefold hollow on Cu(1 1 1) and in the bridge-site on Cu(0 0 1), instead of on-top as found experimentally. It is demonstrated that the correct site preference is achieved if the underestimation of the HOMO–LUMO gap of CO characteristic for DFT is corrected by applying a molecular DFT + U approach. The DFT + U approach also produces good agreement with the experimentally measured adsorption energies, while introducing only small changes in the calculated geometrical and vibrational properties further improving agreement with experiment which is fair already at the GGA level.
This paper references
Phys
A. I. Liechtenstein (1995)
Surf
J. Kessler (1977)
Nørskov, Chemisorption on metal surfaces
J K. (1990)
Phys
S. L. Dudarev (1998)
10.1063/1.478344
STRUCTURAL AND VIBRATIONAL PROPERTIES OF CARBON MONOXIDE ADLAYERS ON THE COPPER (001) SURFACE
S. Lewis (1999)
Surf
N. Lopez (2001)
Phys
H. B. Michaelson (1977)
Phys
E. J. Moler (1996)
10.1103/PHYSREVB.50.17953
Projector augmented-wave method.
Blöchl (1994)
Surf. Sci
A P Graham (1999)
Phys
Q. Ge (1999)
10.1515/9783111697888-007
E
Adam S. Opalski (1824)
Phys. Rev. B
J P Perdew (1992)
Phys
S. P. Lewis (1999)
10.2172/603669
Spatial structure determination of ( sqrt 3 x sqrt 3)R30 degrees and (1.5 x 1.5)R18 degrees CO or Cu(111) using angle-resolved photoemission extended fine structure.
Moler (1996)
Chem. Phys. Lett
J K Eve (1999)
Chem
J. K. Eve (1999)
10.1103/PHYSREVB.56.13556
Relativistic calculations on the adsorption of CO on the (111) surfaces of Ni, Pd, and Pt within the zeroth-order regular approximation
P. Philipsen (1997)
10.1103/PHYSREVLETT.78.1396
Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]
J. Perdew (1997)
Phys. Rev. B
B Hammer (1999)
Phys. Rev. B
E J Moler (1996)
10.1016/0039-6028(79)90633-2
Interactions of CO molecules adsorbed on Cu(111)
P. Hollins (1979)
10.1103/PHYSREVB.57.1505
Electron-energy-loss spectra and the structural stability of nickel oxide : An LSDA+U study
S. Dudarev (1998)
Phys
P. O. Gartland (1972)
Surf
G. Brodén (1976)
Phys
J. C. Tracy (1972)
10.1016/0039-6028(86)90542-X
An X-ray absorption and photoelectron diffraction study of the Cu{100} c(2 × 2) CO structure
Christopher McConville (1986)
Phys. Rev. B
P Blöchl (1994)
Surf. Sci
R Raval (1988)
Relat
C. J. Hirschmugl (1990)
10.1103/PHYSREVB.54.10862
Spatial structure determination of ( sqrt 3 x sqrt 3)R30 degrees and (1.5 x 1.5)R18 degrees CO or Cu(111) using angle-resolved photoemission extended fine structure.
E. Moler (1996)
10.1103/PHYSREVB.70.165405
Density functional study of CO on Rh(111)
L. Kohler (2004)
10.1088/0953-8984/16/8/001
CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations
M. Gajdoš (2004)
10.1016/0039-6028(86)90052-X
CO adsorption studies on pure and Ni-covered Cu(111) surfaces
W. Kirstein (1986)
Phys
S. Andersson (1979)
Surf
R. Raval (1988)
Phys. Rev. B
G Kresse (1996)
10.1103/PHYSREVB.54.11169
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.
Kresse (1996)
J. Chem. Phys
F Favot (2001)
10.1063/1.1328042
CO adsorbed on Cu(001): A comparison between local density approximation and Perdew, Burke, and Ernezerhof generalized gradient approximation
F. Favot (2001)
10.1016/S0039-6028(01)00706-3
Synergetic effects in CO adsorption on Cu-Pd(111) alloys
N. López (2001)
10.1088/0034-4885/53/10/001
Chemisorption on metal surfaces
J. K. Norsko (1990)
Phys
J. P. Perdew (1992)
Phys. Rev. B
P H T Philipsen (1997)
10.1088/0953-8984/16/26/024
Bonding of NH3, CO, and NO to NiO and Ni-doped MgO: a problem for density functional theory
G. Pacchioni (2004)
10.1016/0039-6028(76)90038-8
Synchrotron radiation study of chemisorptive bonding of CO on transition metals — Polarization effect on Ir(100)☆
G. Brodén (1976)
10.1016/0039-6028(82)90710-5
Carbon monoxide adsorbed on Cu(100) Studied by infrared spectroscopy
R. Ryberg (1982)
Surf. Sci
J Kessler (1977)
J. Electron Spectrosc. Relat. Phenom
C J Hirschmugl (1990)
Surf. Sci
C F Mcconville (1986)
Phys. Rev. Lett
S Andersson (1979)
Catal. Lett
S Vollmer (2001)
J. Chem. Phys
J C Tracy (1972)
Surf. Sci
N Lopez (2001)
10.1021/JP037224Z
Doping dependence of the electronic structure of La1-xNaxMnO3 by resonant X-ray emission and X-ray absorption spectroscopy
F. Bondino (2004)
10.1103/PHYSREVB.52.R5467
Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators.
Liechtenstein (1995)
10.1103/PHYSREVB.23.5048
Self-interaction correction to density-functional approximations for many-electron systems
J. Perdew (1981)
J. Appl. Phys
H B Michaelson (1977)
J. Chem. Phys
S P Lewis (1999)
Phys. Rev. B
G Kresse (1758)
10.1063/1.1328038
Comment on “Surface diffusion potential energy surfaces from first principles: CO chemisorbed on Pt{110}” [J. Chem. Phys. 111, 9461 (1999)]
A. Graham (2001)
10.1515/9783111576855-015
J
Seguin Hen (1824)
Phys. Rev
D M Newns (1123)
Surf. Sci
M A Van Daelen (1998)
Surf
A. P. Graham (1999)
10.1103/PhysRevB.69.161401
First-principles extrapolation method for accurate CO adsorption energies on metal surfaces
S. Mason (2004)
10.1103/PhysRevB.59.1758
From ultrasoft pseudopotentials to the projector augmented-wave method
G. Kresse (1999)
Surf. Sci
W Kirstein (1986)
Phys
G. A. Haas (1977)
10.1016/0039-6028(88)90088-X
FT-rairs, eels and leed studies of the adsorption of carbon monoxide on Cu(111)
R. Raval (1988)
10.1016/S0009-2614(99)00986-0
Low-temperature adsorption of CO on Cu(111) studied by reflection absorption infrared spectroscopy
J. K. Eve (1999)
10.1103/PHYSREVB.59.7413
Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
B. Hammer (1999)
10.1103/PHYSREVLETT.43.363
Structure of CO Adsorbed on Cu(100) and Ni(100)
S. Andersson (1979)
Phys. Rev. B
S L Dudarev (1505)
Phys
D. M. Newns (1969)
Phys. Rev. B
A I Liechtenstein (1995)
Norv
P O Gartland (1972)
10.1103/PHYSREVB.32.6222
Photoemission and electron-energy-loss spectroscopy investigation of CO
Heskett (1985)
10.1103/PHYSREVB.46.6671
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation.
Perdew (1992)
Phys
P. Blöchl (1994)
Surf
W. Kirstein (1986)
Phys
A. P. Graham (2001)
Phys
B. Hammer (1999)
10.1063/1.1677602
Structural Influences on Adsorption Energy. III. CO on Cu(100)
J. C. Tracy (1972)
10.1016/0368-2048(90)80203-M
Adsorbate-substrate resonant interactions observed for Co on Cu(100) and (111) in the far-ir using synchrotron radiation
C. Hirschmugl (1990)
Surf
R. Ryberg (1982)
Surf. Sci
R Ryberg (1982)
J. Phys.: Condens. Matter
M Gajdoš (1141)
10.1021/JP002302T
The CO/Pt(111) puzzle
P. Feibelman (2000)
10.1063/1.323539
The work function of the elements and its periodicity
H. Michaelson (1977)
10.1016/0039-6028(77)90003-6
Chemisorption of CO on differently prepared Cu(111) surfaces
J. Kessler (1977)
Surf. Sci
G Brodén (1976)
Phys. Rev. B
J P Perdew (1981)
Surf. Sci
P Hollins (1979)
J. Chem. Phys
Q Ge (1999)
Surf
P. Hollins (1979)
J. Appl. Phys
G A Haas (1977)
Phys
F. Favot (2001)
10.1023/A:1012755616064
Determination of Site Specific Adsorption Energies of CO on Copper
S. Vollmer (2001)
10.1103/PHYSREVLETT.77.3865
Generalized Gradient Approximation Made Simple.
Perdew (1996)
Phys
G. Kresse (2003)
Surf
C. F. McConville (1986)
Chem
P. J. Feibelman (2001)
Electromagnetic Waves: Recent Developments in Research
T Fauster (1995)
Phys. Rev. B
D Heskett (1985)
10.1016/S0039-6028(99)00224-1
Determination of the lateral potential energy surface of single adsorbed atoms and molecules on single crystal surfaces using helium atom scattering
A. Graham (1999)
10.1063/1.1328039
Response to “Comment on ‘Surface diffusion potential energy surfaces from first principles”’ [J. Chem. Phys. 114, 1051 (2001)]
Q. Ge (2001)
J. Phys. Chem. B
P J Feibelman (2001)
Catal
S. Vollmer (2001)
Phys. Rev. B
G Kresse (2003)
J. Chem. Phys
A P Graham (1051)
Phys. Rev. B accepted
L Köhler
10.1063/1.323329
Work function and secondary emission studies of various Cu crystal faces
George A. Haas (1977)
10.1103/PHYSREVB.68.073401
Significance of single-electron energies for the description of CO on Pt(111)
G. Kresse (2003)
10.1103/PHYSREV.178.1123
Self-Consistent Model of Hydrogen Chemisorption
D. Newns (1969)
10.1063/1.480275
Surface diffusion potential energy surfaces from first principles: CO chemisorbed on Pt{110}
Q. Ge (1999)
10.1016/S0039-6028(98)00640-2
Reactivity of diatomic molecules on Cu(100)
V. A. V. Daelen (1998)



This paper is referenced by
10.1021/acs.jctc.8b00288
Nonempirical Meta-Generalized Gradient Approximations for Modeling Chemisorption at Metal Surfaces.
A. Garza (2018)
10.1103/PHYSREVB.79.205413
Density functional theory study of the energetics, electronic structure, and core-level shifts of NO adsorption on the Pt(111) surface
Z. Zeng (2009)
10.1007/S00706-007-0828-6
Adsorption and reaction of organic molecules on solid surfaces – ab-initio density functional investigations
J. Hafner (2008)
10.1016/J.SUSC.2011.01.003
A theoretical study of CO adsorption on FeCo(100) and the effect of alloying
Panithita Rochana (2011)
10.1073/pnas.1721498115
Vibrations of a molecule in an external force field
N. Okabayashi (2018)
10.1103/PhysRevB.76.195440
CO adsorption on metal surfaces: A hybrid functional study with plane-wave basis set
A. Stroppa (2007)
10.1073/pnas.1322239111
Kondo conductance across the smallest spin 1/2 radical molecule
R. Requist (2013)
10.1088/0953-8984/22/39/395001
Ab initio calculations of the dispersion of surface phonons of a c(2 × 2) CO overlayer on Ag(001).
M. A. Ortigoza (2010)
10.1002/9783527680573.CH31
Basics of Adsorption
K. Wandelt (2016)
10.1126/science.aay3444
Chemical bond formation showing a transition from physisorption to chemisorption
F. Huber (2019)
10.5772/INTECHOPEN.72020
The DFT+U: Approaches, Accuracy, and Applications
S. Tolba (2018)
10.1007/s00894-009-0471-8
Adsorption of CO on Cu (110) and (100) surfaces using COSMO-based DFT
Zhijun Zuo (2009)
10.1103/PHYSREVB.74.155439
Energetics of CO on stepped and kinked Cu surfaces : A comparative theoretical study
F. Mehmood (2006)
10.1088/1464-4258/8/4/S23
Light emission from scanning tunnelling microscope on polycrystalline Au films—what is happening at the single-grain level?
P. Dawson (2006)
10.1088/1361-648X/aa66a3
DFT and TPD study of the role of steps in the adsorption of CO on copper: Cu(4 1 0) versus Cu(1 0 0).
A. Kokalj (2017)
10.1063/1.4795435
Structure and chemical reactivity of the polar three-fold surfaces of GaPd: a density-functional study.
M. Krajčí (2013)
10.1016/J.APCATA.2010.01.014
Surface properties of copper in different solvent mother solutions: A density functional theory study
Zhi-jun Zuo (2010)
10.1016/J.IJHYDENE.2013.11.048
Insights into the reaction mechanisms of methanol decomposition, methanol oxidation and steam reforming of methanol on Cu(111): A density functional theory study
Zhi-jun Zuo (2014)
10.1063/1.4872037
The DFT+Umol method and its application to the adsorption of CO on platinum model clusters.
T. M. Soini (2014)
10.1021/jacs.7b10142
Structure- and Potential-Dependent Cation Effects on CO Reduction at Copper Single-Crystal Electrodes
Elena Pérez-Gallent (2017)
10.1016/J.SUSC.2016.09.002
CO Adsorption on Pd(111) at 0.5ML: a First Principles Study
Zahra Hooshmand Gharehbagh (2015)
10.1103/physrevlett.124.196101
Strumming a Single Chemical Bond.
A. J. Weymouth (2020)
10.1021/JP710890A
Embedded Configuration Interaction Description of CO on Cu(111): Resolution of the Site Preference Conundrum
S. Sharifzadeh (2008)
10.1134/S2070205109010018
Recent trends in experimental and theoretical investigations of chemisorptions on metal-electrolyte interface. I. In situ spectroscopic studies and the density functional theory calculations
V. A. Marichev (2009)
10.1063/1.4955104
First-principles study of Au-Cu alloy surface changes induced by gas adsorption of CO, NO, or O2.
M. Dhifallah (2016)
10.1007/S11467-009-0038-2
Density functional theory study of surface catalysis and adsorption on several elements in Group I-B and VIII
W. Gao (2009)
First principles insights on CO adsorption on metal surfaces
Kareem M Gameel (2018)
10.1039/c5cp03204k
Density functional theory calculations of the hydrazine decomposition mechanism on the planar and stepped Cu(111) surfaces.
S. S. Tafreshi (2015)
10.1016/J.APSUSC.2019.02.046
Insight into activation of CO and initial C2 oxygenate formation during synthesis of higher alcohols from syngas on the model catalyst K2O/Cu(111) surface
Tao Zhang (2019)
10.1039/C8CP04955F
Core electron binding energies of adsorbates on Cu(111) from first-principles calculations.
J. M. Kahk (2018)
10.1039/B515651C
Microkinetic modeling of CO TPD spectra using coverage dependent microcalorimetric heats of adsorption.
J. Strunk (2006)
10.1016/J.CORSCI.2010.04.014
Insight of DFT and atomistic thermodynamics on the adsorption and insertion of halides onto the hydroxylated NiO(1 1 1) surface
A. Bouzoubaa (2010)
See more
Semantic Scholar Logo Some data provided by SemanticScholar