Online citations, reference lists, and bibliographies.
← Back to Search

Laminin {alpha}1 Chain Corrects Male Infertility Caused By Absence Of Laminin {alpha}2 Chain.

M. Häger, K. Gawlik, A. Nyström, T. Sasaki, M. Durbeej
Published 2005 · Medicine, Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
Laminins are important for basement membrane structure and function. The laminin alpha2 chain is a major component of muscle basement membranes, and mutations in the laminin alpha2 gene lead to congenital muscular dystrophy in humans and mice. Although the laminin alpha2 chain is prominently expressed in testicular basement membranes, its role in testis has remained unclear. Here, we show that laminin alpha1, alpha2, beta1, beta2, gamma 1, and gamma 3 chains are the major laminin chains in basement membranes of seminiferous tubules. In laminin alpha2 chain-deficient dy(3 K)/dy(3 ASK) mice, lack of laminin alpha2 chain led to concurrent reduction of laminin gamma 3 chain and abnormal testicular basement membranes. Seminiferous tubules of laminin alpha2 chain-deficient dy(3 K)/dy(3 K) mice displayed a defect in the timing of lumen formation, resulting in production of fewer spermatides. We also demonstrate that overexpression of laminin alpha1 chain in testis of dy(3 K)/dy(3 K) mice compensated for laminin alpha2 chain deficiency and significantly reversed the appearance of the histopathological features. We thus provide genetic data that laminin alpha chains are essential for normal testicular function in vivo.
This paper references
Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells.
K. Yomogida (1994)
10.1074/JBC.M501875200
Laminin γ3 Chain Binds to Nidogen and Is Located in Murine Basement Membranes*
N. Gersdorff (2005)
10.1083/JCB.134.6.1483
Merosin and laminin in myogenesis; specific requirement for merosin in myotube stability and survival
P. Vachon (1996)
10.1038/NG1095-216
Mutations in the laminin α2–chain gene (LAMA2) cause merosin–deficient congenital muscular dystrophy
A. Helbling-Leclerc (1995)
10.1073/pnas.251547198
Akt/PKB regulates laminin and collagen IV isotypes of the basement membrane
X. Li (2001)
10.1016/S0014-5793(01)02812-5
Modification of the laminin α4 chain by chondroitin sulfate attachment to its N‐terminal domain
T. Sasaki (2001)
10.1016/S0014-5793(98)00601-2
The N‐terminal globular domain of the laminin α1 chain binds to α1β1 and α2β1 integrins and to the heparan sulfate‐containing domains of perlecan
N. Ettner (1998)
Distinct changes in the laminin composition of basement membranes in human seminiferous tubules during development and degeneration.
I. Virtanen (1997)
10.1083/JCB.200401058
Laminin: the crux of basement membrane assembly.
T. Sasaki (2004)
10.1177/002215549804600404
Distribution of Dystroglycan in Normal Adult Mouse Tissues
M. Durbeej (1998)
10.1369/jhc.3A6192.2004
Immunohistochemical Study of Protein 4.1B in the Normal and W/Wv Mouse Seminiferous Epithelium
N. Terada (2004)
10.1016/J.MATBIO.2005.05.006
A simplified laminin nomenclature.
M. Aumailley (2005)
Deficiency of merosin in dystrophic dy mice and genetic linkage of laminin M chain gene to dy locus.
Y. Sunada (1994)
10.1093/HMG/6.6.831
Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice.
R. Williamson (1997)
10.1093/HMG/6.5.747
Mild congenital muscular dystrophy in two patients with an internally deleted laminin alpha2-chain.
V. Allamand (1997)
10.1046/J.1365-2605.1999.00195.X
Expression of the integrin subunits α5, α6 and β1 in the testes of the common marmoset
B. Husen (1999)
10.1093/HMG/DDH190
Laminin α1 chain reduces muscular dystrophy in laminin α2 chain deficient mice
K. Gawlik (2004)
10.1242/dev.01112
Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation
J. Miner (2004)
10.1083/JCB.145.3.605
Characterization and Expression of the Laminin γ3 Chain: A Novel, Non-Basement Membrane–associated, Laminin Chain
M. Koch (1999)
10.1006/JMBI.2001.5176
Short arm region of laminin-5 gamma2 chain: structure, mechanism of processing and binding to heparin and proteins.
T. Sasaki (2001)
10.1155/2000/90943
Aberrant Development of Thymocytes in Mice Lacking Laminin-2
W. Magner (2000)
10.1074/JBC.M310013200
Laminin α2 Is Essential for Odontoblast Differentiation Regulating Dentin Sialoprotein Expression*
Kenji Yuasa (2004)
10.1177/002215540205000813
Localization of Laminin α4-Chain in Developing and Adult Human Tissues
Noora Petäjäniemi (2002)
10.1530/JRF.0.0990479
Postnatal development of testicular cell populations in mice.
R. Vergouwen (1993)
10.1073/pnas.072207299
Restoration of spermatogenesis by lentiviral gene transfer: Offspring from infertile mice
M. Ikawa (2002)
10.1016/s0960-8966(02)00278-x
Spontaneous muscular dystrophy caused by a retrotransposal insertion in the mouse laminin α2 chain gene
S. Besse (2003)
Cell and molecular biology of the testis
C. Desjardins (1993)
10.1146/ANNUREV.CELLBIO.20.010403.094555
Laminin functions in tissue morphogenesis.
J. Miner (2004)
10.1083/JCB.114.3.567
Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments
Patricia Rousselle (1991)
10.1210/ENDO.136.10.7664664
Evidence that basement membrane prevents apoptosis of Sertoli cells in vitro in the absence of known regulators of Sertoli cell function.
G. Dirami (1995)
10.1210/EN.2002-220786
The interplay of collagen IV, tumor necrosis factor-alpha, gelatinase B (matrix metalloprotease-9), and tissue inhibitor of metalloproteases-1 in the basal lamina regulates Sertoli cell-tight junction dynamics in the rat testis.
Michelle K. Y. Siu (2003)
10.1016/S0959-437X(02)00309-X
Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models.
M. Durbeej (2002)
10.1038/ng0501-82
Haploinsufficiency of protamine-1 or -2 causes infertility in mice
Chunghee Cho (2001)
10.1083/JCB.200304154
Integrin-linked kinase is required for laminin-2–induced oligodendrocyte cell spreading and CNS myelination
S. J. Chun (2003)
10.1016/S1096-7192(02)00039-2
Hearing loss in the laminin-deficient dy mouse model of congenital muscular dystrophy.
D. A. Pillers (2002)
10.1016/S0014-5793(97)01007-7
Laminin α2 chain‐null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)‐deficient congenital muscular dystrophy
Y. Miyagoe (1997)
10.1046/J.0014-2956.2001.02663.X
Domain IV of mouse laminin beta1 and beta2 chains.
T. Sasaki (2002)
10.1016/S0955-0674(96)80102-5
Macromolecular organization of basement membranes.
R. Timpl (1996)
10.1016/s0960-8966(02)00266-3
Laminin α2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice
L. Guo (2003)
10.1073/PNAS.0405095102
Laminin alpha1 globular domains 4-5 induce fetal development but are not vital for embryonic basement membrane assembly.
Susanne Schéele (2005)
Immune complex orchitis in infertile men. Immunoelectron microscopy of abnormal basement membrane structures.
F. Salomon (1982)
10.1073/PNAS.41.12.1079
Dystrophia Muscularis: A HEREDITARY PRIMARY MYOPATHY IN THE HOUSE MOUSE.
A. M. Michelson (1955)
10.1016/0014-4827(91)90095-C
Identification and partial characterization of laminin binding proteins in immature rat Sertoli cells.
C. M. Davis (1991)
10.1172/JCI3705
Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models.
Wenhua Kuang (1998)
10.1073/PNAS.91.12.5572
Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse.
H. Xu (1994)
10.1002/glia.1075
Schwann cell myelination occurred without basal lamina formation in laminin α2 chain‐null mutant (dy3K/dy3K) mice
M. Nakagawa (2001)
10.1016/j.tem.2004.09.009
Cell–cell interactions at the ectoplasmic specialization in the testis
D. Mruk (2004)
[Merosin-deficient congenital muscular dystrophy].
M. Roccella (2006)
10.1172/JCI22928
Inhibition of apoptosis improves outcome in a model of congenital muscular dystrophy.
M. Girgenrath (2004)
10.1002/BIES.20099
Dynamic cross‐talk between cells and the extracellular matrix in the testis
Michelle K. Y. Siu (2004)
10.1038/NG0796-370
Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice
E. Georges-Labouesse (1996)
10.1038/nrg911
Human genetics and disease: Mouse models of male infertility
H. Cooke (2002)
10.1016/S0960-8966(02)00078-0
Viral vectors for gene transfer of micro-, mini-, or full-length dystrophin
J. Scott (2002)
10.1016/S0945-053X(03)00015-5
Expression and biological role of laminin-1.
P. Ekblom (2003)
10.1016/S0014-5793(01)03167-2
Domain IVa of laminin α5 chain is cell‐adhesive and binds β1 and αVβ3 integrins through Arg‐Gly‐Asp
T. Sasaki (2001)
10.1002/(SICI)1097-0029(20000201/15)48:3/4<181::AID-JEMT6>3.0.CO;2-Q
Merosin and congenital muscular dystrophy
Y. Miyagoe-Suzuki (2000)
10.1111/J.1432-1033.1997.T01-1-00115.X
Characterization of recombinant perlecan domain I and its substitution by glycosaminoglycans and oligosaccharides.
M. Costell (1997)



This paper is referenced by
10.1530/REP-07-0561
A comprehensive survey of the laminins and collagens type IV expressed in mouse Leydig cells and their regulation by LH/hCG.
S. Mazaud Guittot (2008)
Gene expression studies of pregastrulation development: the basement membrane is essential for cell differentiation
M. Åkerlund (2009)
10.1091/mbc.E13-02-0100
Nesprin-3 connects plectin and vimentin to the nuclear envelope of Sertoli cells but is not required for Sertoli cell function in spermatogenesis
M. Ketema (2013)
10.1096/fj.201600870R
Regulation of the blood‐testis barrier by a local axis in the testis: role of laminin α2 in the basement membrane
Y. Gao (2017)
Laminins in blood vessel development and disease -functional aspects in angiogenesis, atherosclerosis, and muscular dystrophy
A. Nyström (2006)
10.1242/dev.185884
Development and function of smooth muscle cells is modulated by Hic1 in mouse testis
Aya Uchida (2020)
10.1182/BLOOD-2006-10-051276
Distinct roles of integrins alpha6 and alpha4 in homing of fetal liver hematopoietic stem and progenitor cells.
H. Qian (2007)
10.5772/36743
Transmission Electron Microscopy for the Quantitative Analysis of Testis Ultra Structure
S. Shokri (2012)
10.1111/J.1745-7262.2007.00234.X
Assessment of seminal plasma laminin in fertile and infertile men.
Mohamed El-Dakhly (2007)
10.1210/en.2016-1630
Basement Membrane Laminin &agr;2 Regulation of BTB Dynamics via Its Effects on F-Actin and Microtubule Cytoskeletons Is Mediated Through mTORC1 Signaling
Y. Gao (2017)
Histological and Ultrastructural Changes in Mammalian Testis under the Effect of Hydrocortisone
Waslat W. Elshennawy (2011)
10.1007/s10856-012-4713-4
Porous protein-based scaffolds prepared through freezing as potential scaffolds for tissue engineering
L. Elowsson (2012)
10.1634/stemcells.2007-1018
A Novel Approach for the Derivation of Putative Primordial Germ Cells and Sertoli Cells from Human Embryonic Stem Cells
N. Bucay (2009)
10.1080/19396360802415760
Antibodies Against Laminin-1 and Sperm, Intraacrosomal Proteins in Semen from Infertile Couples
Z. Ulčová-Gallová (2008)
10.1093/HMG/DDL201
Laminin alpha1 chain improves laminin alpha2 chain deficient peripheral neuropathy.
K. Gawlik (2006)
10.1016/J.MATBIO.2006.05.001
Extraocular muscle is spared upon complete laminin alpha2 chain deficiency: comparative expression of laminin and integrin isoforms.
A. Nyström (2006)
Laminin 1 chain improves laminin 2 chain deficient peripheral neuropathy
K. Gawlik (2006)
10.1007/978-1-4939-7505-1_13
Fertility Preservation in Cancer Patients
S. David (2017)
10.1186/1471-213X-6-13
laminin alpha 1 gene is essential for normal lens development in zebrafish
N. Zinkevich (2005)
10.1111/j.1600-0714.2010.00936.x
EGF/TGFβ1 co-stimulation of oral squamous cell carcinoma cells causes an epithelial-mesenchymal transition cell phenotype expressing laminin 332.
P. Richter (2011)
10.1002/mus.21616
Transgenic overexpression of laminin α1 chain in laminin α2 chain–deficient mice rescues the disease throughout the lifespan
K. Gawlik (2010)
10.1097/01.EHX.0000481141.52450.03
Effect of aflatoxin B1 on the seminiferous tubules and the possible protective role of curcumin in adult albino rats (Light and electron microscopic study)
Eman Ali Elkordy (2015)
10.1016/j.matbio.2018.02.024
Laminin α1 reduces muscular dystrophy in dy2J mice.
K. Gawlik (2018)
10.1186/s13039-015-0141-8
Azoospermia and trisomy 18p syndrome: a fortuitous association? A patient report and a review of the literature
G. Jedraszak (2015)
10.1186/2044-5040-1-9
Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies
K. Gawlik (2010)
10.1007/978-0-387-09597-4_8
Proteases and Their Cognate Inhibitors of the Serine and Metalloprotease Subclasses, in Testicular Physiology
B. L. Magueresse-Battistoni (2009)
10.1016/j.omtm.2018.01.005
Amelioration of Muscle and Nerve Pathology in LAMA2 Muscular Dystrophy by AAV9-Mini-Agrin
C. Qiao (2018)
10.1080/14647273.2019.1679397
DNA variants are an unlikely explanation for the changing quality of spermatozoa within the same individual.
J. Netherton (2019)
10.1210/en.2019-00308
F5-peptide and mTORC1/rpS6 effectively enhance BTB transport function in the testis - lesson from the adjudin model.
Bai-ping Mao (2019)
Impact Of An Steroidogenesis Inhibitor Drug On Structure And Ultrastructure Of Mammalian Testis
Waslat W. Elshennawy (2011)
10.2353/AJPATH.2007.060927
Overexpression of the cytotoxic T cell (CT) carbohydrate inhibits muscular dystrophy in the dyW mouse model of congenital muscular dystrophy 1A.
R. Xu (2007)
10.1002/humu.23599
LAMA2 gene mutation update: Toward a more comprehensive picture of the laminin‐α2 variome and its related phenotypes
Jorge Oliveira (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar