Online citations, reference lists, and bibliographies.
← Back to Search

Quantification Of EEG Reactivity In Comatose Patients

M. Hermans, M. Westover, M. Putten, L. Hirsch, N. Gaspard
Published 2016 · Medicine, Psychology

Cite This
Download PDF
Analyze on Scholarcy
Share
OBJECTIVE EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. METHODS In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. RESULTS The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet's AC1: 65-70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts' agreement regarding reactivity for each individual case. CONCLUSION Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. SIGNIFICANCE Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity.
This paper references
10.3109/02699052.2011.589795
Predict recovery of consciousness in post-acute severe brain injury: The role of EEG reactivity
Fiammetta Logi (2011)
10.1103/PhysRevE.62.8380
Kulback-Leibler and renormalized entropies: applications to electroencephalograms of epilepsy patients.
R. Quiroga (2000)
10.1016/j.clinph.2012.06.017
Stimulus-induced rhythmic, periodic or ictal discharges (SIRPIDs) in comatose survivors of cardiac arrest: Characteristics and prognostic value
V. Alvarez (2013)
10.1109/TBME.1975.324504
Modeling the Stationarity and Gaussianity of Spontaneous Electroencephalographic Activity
J. McEwen (1975)
10.1097/WNP.0b013e318182ed67
Interobserver Agreement in the Interpretation of EEG Patterns in Critically Ill Adults
Paula Gerber (2008)
10.1016/S1388-2457(03)00093-2
EMG contamination of EEG: spectral and topographical characteristics
I. Goncharova (2003)
10.1016/j.clinph.2012.07.007
Quantification of the adult EEG background pattern
S. Lodder (2013)
10.1097/CCM.0000000000000626
Electroencephalogram Predicts Outcome in Patients With Postanoxic Coma During Mild Therapeutic Hypothermia*
M. Tjepkema-Cloostermans (2015)
10.1017/S0317167100032996
An electroencephalographic classification for coma.
G. Young (1997)
10.2307/2280095
The Kolmogorov-Smirnov Test for Goodness of Fit
F. J. Massey (1951)
10.1016/j.jneumeth.2006.07.011
Comparing spectra and coherences for groups of unequal size
H. Bokil (2007)
10.1007/b94608
The Elements of Statistical Learning
T. Hastie (2001)
10.1080/01621459.1967.10482916
On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown
H. Lilliefors (1967)
10.1214/AOS/1176349027
Model Selection Via Multifold Cross Validation
P. Zhang (1993)
AUTOMATIC ARTIFACT REJECTION FOR EEG DATA USING HIGH-ORDER STATISTICS AND INDEPENDENT COMPONENT ANALYSIS
A. Delorme (2001)
10.1016/S0013-4694(97)00071-0
Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring.
P. Vespa (1997)
10.1109/PROC.1982.12433
Spectrum estimation and harmonic analysis
D.J. Thomson (1982)
10.1016/S0165-0270(00)00356-3
Wavelet entropy: a new tool for analysis of short duration brain electrical signals
O. Rosso (2001)
10.1097/WNP.0B013E31816BDF85
The colorful brain: visualization of EEG background patterns.
M. Putten (2008)
10.1016/j.clinph.2013.10.017
Burst-suppression with identical bursts: A distinct EEG pattern with poor outcome in postanoxic coma
J. Hofmeijer (2014)
10.1214/aoms/1177697287
Jackknifing U-statistics
J. Arvesen (1968)
10.1177/155005949002100111
Value of a Revised EEG Coma Scale for Prognosis after Cerebral Anoxia and Diffuse Head Injury
V. Synek (1990)
10.1097/00004691-200009000-00006
The EEG in coma.
Young Gb (2000)
10.1097/WNP.0b013e3182570f83
Interrater Reliability of ICU EEG Research Terminology
R. Mani (2012)
10.1177/1550059413509616
Automated Analysis of Background EEG and Reactivity During Therapeutic Hypothermia in Comatose Patients After Cardiac Arrest
Q. Noirhomme (2014)
10.1348/000711006X126600
Computing inter-rater reliability and its variance in the presence of high agreement.
K. Gwet (2008)
10.1212/WNL.49.1.277
Assessment of digital EEG, quantitative EEG, and EEG brain mapping: Report of the American Academy of Neurology and the American Clinical Neurophysiology Society*
M. Nuwer (1997)
10.1111/epi.12653
Interrater agreement for Critical Care EEG Terminology
N. Gaspard (2014)
10.1016/j.jneumeth.2010.06.020
Chronux: A platform for analyzing neural signals
H. Bokil (2010)
10.1002/ana.21984
Prognostication after cardiac arrest and hypothermia: A prospective study
A. Rossetti (2010)
10.1097/CCM.0000000000000211
Early Multimodal Outcome Prediction After Cardiac Arrest in Patients Treated With Hypothermia*
M. Oddo (2014)
10.1016/S0140-6736(98)04076-8
Systematic review of early prediction of poor outcome in anoxicischaemic coma
E. Zandbergen (1998)
10.1016/J.CLINPH.2004.06.017
Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage
J. Claassen (2004)
Electroencephalographic patterns in coma: when things slow down
R. Sutter (2012)
10.1212/01.wnl.0000227183.21314.cd
Practice Parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review)
E. Wijdicks (2006)
10.1016/j.clinph.2006.08.007
Extended BSI for continuous EEG monitoring in carotid endarterectomy
M. Putten (2006)
10.1214/AOMS/1177729694
On Information and Sufficiency
S. Kullback (1951)



This paper is referenced by
10.1007/978-3-319-31230-9_11
Quantitative EEG Analysis: Basics
Saurabh R. Sinha (2017)
10.1016/j.resuscitation.2018.07.024
Highly malignant routine EEG predicts poor prognosis after cardiac arrest in the Target Temperature Management trial.
S. Backman (2018)
10.1007/s10072-017-2824-x
Neurophysiological assessment of brain dysfunction in critically ill patients: an update
E. Azabou (2017)
10.1007/978-3-319-29674-6_16
EEG Assessment of Consciousness Rebooting from Coma
C. Şerban (2017)
10.1097/PCC.0000000000001020
Identifying Brain Dysfunction Among Children With Acute Liver Failure-Can Spectral Electroencephalography Help?
Eric T. Payne (2017)
10.1161/CIR.0000000000000702
Standards for Studies of Neurological Prognostication in Comatose Survivors of Cardiac Arrest: A Scientific Statement From the American Heart Association.
R. Geocadin (2019)
10.1016/j.resuscitation.2017.07.020
Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.
Evdokia Efthymiou (2017)
10.1111/ene.13219
Electroencephalographic reactivity testing in unconscious patients: a systematic review of methods and definitions
M. M. Admiraal (2017)
10.1155/2016/8273716
Predicting Outcome in Comatose Patients: The Role of EEG Reactivity to Quantifiable Electrical Stimuli
G. Liu (2016)
10.1016/j.clinph.2016.08.012
Stimulus induced bursts in severe postanoxic encephalopathy
Marleen C. Tjepkema-Cloostermans (2016)
10.1186/s13054-018-2104-z
Value and mechanisms of EEG reactivity in the prognosis of patients with impaired consciousness: a systematic review
E. Azabou (2018)
10.1007/s11910-018-0826-6
Prognostic Value of EEG in Patients after Cardiac Arrest—An Updated Review
W. Muhlhofer (2018)
10.1016/j.neulet.2016.04.055
Electroencephalography reactivity for prognostication of post-anoxic coma after cardiopulmonary resuscitation: A comparison of quantitative analysis and visual analysis
Gang Liu (2016)
10.1007/s11936-017-0548-0
Neurologic Recovery After Cardiac Arrest: a Multifaceted Puzzle Requiring Comprehensive Coordinated Care
Carolina B. Maciel (2017)
10.1016/j.jneumeth.2020.108812
EEG signal varies with different outcomes in comatose patients: A quantitative method of electroencephalography reactivity
Weibi Chen (2020)
10.1016/j.clinph.2018.01.054
Large inter-rater variability on EEG-reactivity is improved by a novel quantitative method
C. Duez (2018)
10.1016/j.resuscitation.2019.03.014
Electromyographic reactivity measured with scalp-EEG contributes to prognostication after cardiac arrest.
M. Caporro (2019)
10.1186/s12883-017-0977-0
EEG dynamical correlates of focal and diffuse causes of coma
Mohammadmehdi Kafashan (2017)
10.1097/PCC.0000000000001021
Extracorporeal Membrane Oxygenation: What Does the Future Hold?
Ira M Cheifetz (2017)
10.1055/s-0036-1595815
Electroencephalography as a Prognostic Tool after Cardiac Arrest
E. Westhall (2017)
10.1097/WNP.0000000000000272
EEG Monitoring in Cerebral Ischemia: Basic Concepts and Clinical Applications
M. V. van Putten (2016)
Electroencephalography for neurological prognostication after cardiac arrest
Erik Westhall (2016)
10.1093/brain/aww063
Reply: Replicability and impact of statistics in the detection of neural responses of consciousness.
Marzia De Lucia (2016)
10.1002/ana.25507
Electroencephalographic reactivity as predictor of neurological outcome in postanoxic coma: A multicenter prospective cohort study
M. Admiraal (2019)
Automated Detection and Prediction of Seizures Using Probing Neurostimulation
Senan Ebrahim (2019)
10.1177/1550059417726475
The Nature of EEG Reactivity to Light, Sound, and Pain Stimulation in Neurosurgical Comatose Patients Evaluated by a Quantitative Method
B. Johnsen (2017)
Quantitative EEG in the Intensive Care Unit
Frederic Zubler (2016)
10.1002/ana.24943
Early prediction of coma recovery after cardiac arrest with blinded pupillometry
D. Solari (2017)
10.1016/j.clinph.2016.02.002
EEG in postanoxic coma: Prognostic and diagnostic value
J. Hofmeijer (2016)
10.1007/978-3-319-31230-9_5
Criteria for Continuous EEG Monitoring
Keith E Dombrowski (2017)
INVITED REVIEW ACNS Critical Care EEG Terminology: Value, Limitations, and Perspectives
Nicolas Gaspard ()
10.1016/j.resuscitation.2018.07.025
International consensus on EEG reactivity testing after cardiac arrest: Towards standardization.
M. Admiraal (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar