Online citations, reference lists, and bibliographies.
← Back to Search

Lupin Pyranoisoflavones Inhibiting Hyphal Development In Arbuscular Mycorrhizal Fungi.

K. Akiyama, Fumiaki Tanigawa, Takanori Kashihara, H. Hayashi
Published 2010 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
White lupin (Lupinus albus L.), a non-host plant for arbuscular mycorrhizal (AM) fungi in the typically mycotrophic family Fabaceae, has been investigated for root metabolites that inhibit hyphal development in AM fungi. Four known pyranoisoflavones, licoisoflavone B (1), sophoraisoflavone A (2), alpinumisoflavone (3) and 3'-hydroxy-4'-O-methylalpinumisoflavone (4), together with three previously unknown pyranoisoflavones, lupindipyranoisoflavone A (5), 10'-hydroxylicoisoflavone B (6) and 10'-hydroxysophoraisoflavone A (7) were isolated from the root exudates of white lupin as an inhibitor of germ tube growth in the AM fungus Gigaspora margarita. Pyranoisoflavones 1, 2 and 3 strongly inhibited germ tube growth at 0.63, 1.25 and 0.63 μg/disc, respectively. The remaining compounds 4-7 were either moderate or weak inhibitors that inhibited germ tube growth at concentrations higher than 10 μg/disc. Licoisoflavone B (1) and sophoraisoflavone A (2) completely inhibited hyphal branching induced by a lupin strigolactone, orobanchyl acetate, in G. margarita at 0.16 and 0.63 μg/disc, respectively.
This paper references
10.1016/S0031-9422(00)88921-9
The isopentenyl isoflavone luteone as a pre-infectional antifungal agent in the genus Lupinus
J. B. Harborne (1976)
10.1248/CPB.26.144
A New Isoflavone and the Corresponding Isoflavanone of Licorice Root
T. Saitoh (1978)
A new isoflavone and the corresponding isoflavone of licorice
T. Saitoh (1978)
10.1016/S0031-9422(82)85056-5
A pyrano-isoflavone from seeds of Milletia thonningii☆
E. Olivares (1982)
10.1515/znc-1983-3-407
Fungitoxic Isoflavones from Lupinus albus and other Lupinus Species
J. L. Ingham (1983)
10.1248/CPB.36.2220
Studies on the Constituents of Sophora Species. XXII. : Constituents of the Root of Sophora moorcroftiang BENTH. ex BAKER. (1)
Y. Shirataki (1988)
10.1016/0031-9422(89)80140-2
SEVENTEEN ISOFLAVONOIDS FROM LUPINUS ALBUS ROOTS
S. Tahara (1989)
Seventeen isoflavonoids from Lupinus albus
S. Tahara (1989)
10.1515/znc-1990-3-402
Further Isoflavonoids from White Lupin Roots
S. Tahara (1990)
The Response of Different Species of Lupinus to VAM Endophytes
L. Avio (1990)
Further isoflavonoids from white lupin
S. Tahara (1990)
10.3987/COM-91-5918
Synthesis of 4′,5- and 3′,4′,5-oxygenated pyranoisoflavones: Alpinumisoflavone and related compounds, and a revised structure of derrone.
M. Tsukayama (1992)
Synthesis of 40
M. Tsukayama (1992)
10.1111/J.1469-8137.1993.TB03907.X
Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages.
M. Giovannetti (1993)
10.1111/J.1469-8137.1994.TB02973.X
Early processes involved in host recognition by arbuscular mycorrhizal fungi.
M. Giovannetti (1994)
10.1016/0038-0717(95)00021-6
Spreading of Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus, across the rhizosphere of host and non-host plants
H. Vierheilig (1995)
10.1007/s005720050224
Meeting a non-host: the behaviour of AM fungi
M. Giovannetti (1998)
10.1007/978-1-4615-5335-9_2
Flavonoids and arbuscular-mycorrhizal fungi.
H. Vierheilig (1998)
10.1017/S0953756200002860
Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi
G. Nagahashi (2000)
10.1080/00380768.2001.10408433
Arbuscular mycorrhizal colonization in Lupinus and related genera
H. Oba (2001)
10.1016/S0024-3205(02)01864-7
Anti-Helicobacter pylori flavonoids from licorice extract.
T. Fukai (2002)
10.1016/S0367-326X(02)00168-5
Antimicrobial activity of licorice flavonoids against methicillin-resistant Staphylococcus aureus.
T. Fukai (2002)
10.1016/J.IJANTIMICAG.2003.06.003
Studies on the antibacterial potentiality of isoflavones.
S. Dastidar (2004)
10.1023/A:1025515708093
Turnover and distribution of root exudates of Zea mays
Y. Kuzyakov (2004)
10.1007/BF01020159
Isoflavonoids as insect feeding deterrents and antifungal components from root ofLupinus angustifolius
G. Lane (2005)
10.1038/nature03608
Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
K. Akiyama (2005)
10.1111/J.1469-8137.2006.01776.X
Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage.
L. Weisskopf (2006)
10.1093/AOB/MCL063
Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots.
K. Akiyama (2006)
10.1111/J.1469-8137.1993.TB04537.X
Factors affecting appressorium development in the vesicular–arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe
M. Giovannetti (2006)
10.1371/journal.pbio.0040226
Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria
A. Besserer (2006)
10.3390/12071290
Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions.
S. Steinkellner (2007)
10.1016/J.TPLANTS.2007.03.009
Rhizosphere communication of plants, parasitic plants and AM fungi.
H. Bouwmeester (2007)
10.1007/s10725-007-9174-2
Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch)
J. Liu (2007)
10.1016/J.PHYTOCHEM.2007.07.017
Isolation and identification of alectrol as (+)-orobanchyl acetate, a germination stimulant for root parasitic plants.
Xiaonan Xie (2008)
10.1007/s10725-008-9253-z
Production of Strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination
Y. Goldwasser (2008)
10.1038/nature07271
Strigolactone inhibition of shoot branching
V. Gómez-Roldán (2008)
10.1038/nature07272
Inhibition of shoot branching by new terpenoid plant hormones
Mikihisa Umehara (2008)
10.1111/j.1469-8137.2008.02462.x
Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants.
K. Yoneyama (2008)
10.2136/SSSAJ2008.0015BR
Mycorrhizal Symbiosis (Third Edition)
J. E. Smith (2009)
10.1016/J.SOILBIO.2009.10.019
Soil properties are key determinants for the development of exudate gradients in a rhizosphere simulation model
X. Raynaud (2010)



This paper is referenced by
10.2174/1573408016666200123160509
Antiangiogenesis Potential of Alpinumisoflavone as an Inhibitor of Matrix Metalloproteinase-9 (MMP-9) and Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2)
Honeymae C. Alos (2020)
10.1007/s00572-020-00965-9
Initiation of arbuscular mycorrhizal symbiosis involves a novel pathway independent from hyphal branching
Quentin Taulera (2020)
10.1016/S2095-3119(19)62555-4
Role of flavonoids in plant interactions with the environment and against human pathogens — A review
M. Khalid (2019)
10.1007/978-3-030-12153-2
Strigolactones - Biology and Applications
H. Koltai (2019)
10.1007/978-3-030-12153-2_4
The role of strigolactones in plant-microbe interactions
S. Rochange (2019)
10.22161/IJHAF.2.3.2
Effect of Clariodeoglomusclariodeorum on morphology and abundant of carrot root hairs in vitro
N. Rokni (2018)
10.1007/978-3-319-53064-2_8
Plant Flavonoids: Key Players in Signaling, Establishment, and Regulation of Rhizobial and Mycorrhizal Endosymbioses
P. Singla (2017)
10.1111/nph.13779
Common and divergent shoot-root signalling in legume symbioses.
E. Foo (2016)
10.1016/J.PHYTOL.2016.10.003
New flavonoids from the underground parts of Eriosema laurentii
S. B. Ateba (2016)
10.1002/9781119053095.CH50
Flavonoids Play Multiple Roles in Symbiotic Root–Rhizosphere Interactions
Samira Hassan (2015)
10.1080/09168451.2015.1015954
Frontier studies on highly selective bio-regulators useful for environmentally benign agricultural production
H. Hayashi (2015)
Analysis of gene expression, regulation and function of three symbiotic ABC subfamily-B transporters in Medicago truncatula
S. Roy (2015)
10.5511/PLANTBIOTECHNOLOGY.14.0917A
Flavonoids in plant rhizospheres: secretion, fate and their effects on biological communication
Akifumi Sugiyama (2014)
10.1007/978-3-642-54276-3_11
Root exudation: The role of secondary metabolites, their localisation in roots and transport into the rhizosphere
L. Weston (2014)
10.1016/j.fitote.2014.02.010
Natural phosphodiesterase-4 (PDE4) inhibitors from Crotalaria ferruginea.
Ye-Na Liu (2014)
10.3732/ajb.1200474
How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae).
H. Lambers (2013)
10.1007/s10886-013-0248-5
Flavonoids: Their Structure, Biosynthesis and Role in the Rhizosphere, Including Allelopathy
L. Weston (2013)
10.1002/9781118297674.CH51
Roles of Flavonoids in Symbiotic Root–Rhizosphere Interactions
Samira Hassan (2013)
10.1093/jxb/err430
The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions.
Samira Hassan (2012)
10.1007/978-3-642-23524-5_19
Coadaptationary Aspects of the Underground Communication Between Plants and Other Organisms
Akifumi Sugiyama (2012)
10.1007/978-3-642-23047-9_2
Root Exudates of Legume Plants and Their Involvement in Interactions with Soil Microbes
A. Sugiyama (2012)
10.1007/978-3-642-23524-5
Biocommunication of Plants
G. Witzany (2012)
10.1016/j.ympev.2011.04.017
Isolation, phylogeny and evolution of the SymRK gene in the legume genus Lupinus L.
F. Mahé (2011)
10.1007/s00374-011-0653-2
Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review
S. Cesco (2011)
Semantic Scholar Logo Some data provided by SemanticScholar