Online citations, reference lists, and bibliographies.
← Back to Search

Longitudinal Changes In The Visual Field And Optic Disc In Glaucoma

P. Artes, B. Chauhan
Published 2005 · Medicine, Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
The nature and mode of functional and structural progression in open-angle glaucoma is a subject of considerable debate in the literature. While there is a traditionally held viewpoint that optic disc and/or nerve fibre layer changes precede visual field changes, there is surprisingly little published evidence from well-controlled prospective studies in this area, specifically with modern perimetric and imaging techniques. In this paper, we report on clinical data from both glaucoma patients and normal controls collected prospectively over several years, to address the relationship between visual field and optic disc changes in glaucoma using standard automated perimetry (SAP), high-pass resolution perimetry (HRP) and confocal scanning laser tomography (CSLT). We use several methods of analysis of longitudinal data and describe a new technique called "evidence of change" analysis which facilitates comparison between different tests. We demonstrate that current clinical indicators of visual function (SAP and HRP) and measures of optic disc structure (CSLT) provide largely independent measures of progression. We discuss the reasons for these findings as well as several methodological issues that pose challenges to elucidating the true structure-function relationship in glaucoma.
This paper references
10.1117/12.962716
Confocal Laser Tomographic Scanning Of The Eye
G. Zinser (1989)
10.1007/s004170050357
Quantitative analysis of visual field and optic disk in glaucoma: retinal nerve fiber bundle-associated analysis
A. Jünemann (2000)
10.1001/ARCHOPHT.1990.01070090122053
Optic nerve head extracellular matrix in primary optic atrophy and experimental glaucoma.
J. Morrison (1990)
10.1167/IOVS.03-0692
Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by scanning laser polarimetry.
P. Schlottmann (2004)
The use of visual field indices in detecting changes in the visual field in glaucoma.
B. Chauhan (1990)
10.1136/bjo.83.3.290
Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma
D. Kamal (1999)
10.1016/0002-9394(84)90128-4
The mode of progression of visual field defects in glaucoma.
F. Mikelberg (1984)
10.1016/S0140-6736(04)16257-0
Primary open-angle glaucoma
R. Weinreb (2004)
Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography.
B. Chauhan (2000)
10.1167/IOVS.02-1171
Comparison of different methods for detecting glaucomatous visual field progression.
E. Vesti (2003)
10.1016/S0006-8993(02)04234-8
Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection
O. Agapova (2003)
10.1016/S0002-9394(98)00223-2
Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group.
D. R. Anderson (1998)
10.1016/S0161-6420(00)00284-0
Mapping the visual field to the optic disc in normal tension glaucoma eyes.
D. Garway-Heath (2000)
10.1111/J.1600-0420.1997.TB00121.X
Perimetric probability maps to separate change caused by glaucoma from that caused by cataract.
B. Bengtsson (1997)
10.1007/978-3-540-24595-7_44
Drawing Area-Proportional Venn and Euler Diagrams
S. Chow (2003)
Confocal scanning laser tomography
B. Chauhan (1996)
10.1016/S0161-6420(92)31990-6
Expert agreement in evaluating the optic disc for glaucoma.
R. Varma (1992)
10.1016/0002-9394(86)90457-5
The rate of progression of scotomas in glaucoma.
F. Mikelberg (1986)
10.1016/S0002-9394(14)72385-2
Initial glaucomatous optic disk and retinal nerve fiber layer abnormalities and their progression.
A. Tuulonen (1991)
10.1097/00061198-200402000-00004
Visual Field of High-Pass Resolution Perimetry in Normal Subjects
M. Wall (2004)
10.1016/S1350-9462(01)00022-2
Visual field defects and neural losses from experimental glaucoma
R. Harwerth (2002)
10.1001/ARCHOPHT.1993.01090010066028
Progression of disc and field damage in early glaucoma.
T. Zeyen (1993)
Screening for glaucomatous visual field loss with frequency-doubling perimetry.
C. Johnson (1997)
10.1001/ARCHOPHT.1992.01080140062028
Rate and pattern of neuroretinal rim area decrease in ocular hypertension and glaucoma.
P. Airaksinen (1992)
10.1136/bjo.87.6.726
Interobserver agreement on visual field progression in glaucoma: a comparison of methods
A. Viswanathan (2003)
10.1016/S0002-9394(03)00480-X
Clinical agreement among glaucoma experts in the detection of glaucomatous changes of the optic disk using simultaneous stereoscopic photographs.
A. Azuara-Blanco (2003)
10.1136/bjo.81.12.1037
Early detection of visual field progression in glaucoma: a comparison of progressor and statpac 2
A. Viswanathan (1997)
10.1001/ARCHOPHT.1988.01060130673024
A comparison of experienced clinical observers and statistical tests in detection of progressive visual field loss in glaucoma using automated perimetry.
E. Werner (1988)
10.1097/00132578-200307000-00009
Reduction of intraocular pressure and glaucoma progression
A. Heijl (2003)
10.1097/00061198-200002000-00012
Isolation of Short‐wavelength Sensitive Mechanisms in Normal and Glaucomatous Visual Field Regions
S. Demirel (2000)
10.1016/S0161-6420(03)00801-7
Visual field and optic disc progression in patients with different types of optic disc damage: a longitudinal prospective study.
M. Nicolela (2003)
10.1001/ARCHOPHT.120.10.1268
Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial.
A. Heijl (2002)
10.1001/ARCHOPHT.119.10.1492
Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography.
B. Chauhan (2001)
10.1001/ARCHOPHT.1980.01020030486010
The mode of progressive disc cupping in ocular hypertension and glaucoma.
J. E. Pederson (1980)
10.1001/ARCHOPHT.1987.01060110090039
Normal variability of static perimetric threshold values across the central visual field.
A. Heijl (1987)
10.1007/BF00153928
A perimetric nerve fiber bundle map
J. Weber (2004)
10.1007/978-94-009-3325-5_56
A computer-graphics visual field screener using high-pass spatial frequency resolution targets and multiple feedback devices
L. Frisén (1987)
10.1016/S0161-6420(82)34798-3
The onset and evolution of glaucomatous visual field defects.
W. Hart (1982)
10.1016/S0039-6257(01)00299-5
Identification of progressive glaucomatous visual field loss.
P. Spry (2002)



This paper is referenced by
Stereometric parameters of the Heidelberg Retina Tomograph in the follow-up of glaucoma
Ville Saarela (2010)
10.1097/IJG.0000000000000787
Reproducibility of Bruch Membrane Opening-Minimum Rim Width Measurements With Spectral Domain Optical Coherence Tomography
Keunheung Park (2017)
10.1016/J.AJO.2006.04.027
Agreement and repeatability for standard automated perimetry and confocal scanning laser ophthalmoscopy in the diagnostic innovations in glaucoma study.
D. Ng (2006)
10.17077/ETD.404K9Y6B
Statistical modeling to improve the detection of glaucoma progression
C. Kummet (2013)
10.1097/OPX.0b013e318177ec02
Rapid Pupil-Based Assessment of Glaucomatous Damage
Yanjun Chen (2008)
Three-dimensional optical coherence tomography imaging of the optic nerve head
N. Strouthidis (2012)
Disease Progression Modeling Using Multi-Dimensional Continuous-Time Hidden Markov Model
Yu-Ying Liu (2015)
10.1097/IJG.0000000000001528
Comparison of the Progression of Localized Retinal Nerve Fiber Layer Defects in Red-free Fundus Photograph, En Face Structural Image, and OCT Angiography Image
M. J. Ji (2020)
10.1590/S1807-59322008000300008
Comparison of Different Analytic Algorithms for Interpretation of the Swedish Interactive Threshold Algorithm Strategy
Gustavo S. Takahashi (2008)
10.1167/iovs.11-8302
Relationships between visual field sensitivity and spectral absorption properties of the neuroretinal rim in glaucoma by multispectral imaging.
J. Denniss (2011)
10.1016/J.OPHTHA.2007.07.005
Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology.
S. Lin (2007)
10.1111/j.1600-0420.2007.01035.x
Evaluating the effect of the new alignment algorithm for longitudinal series of Heidelberg retina tomography images
C. Bergin (2008)
10.1016/j.spasta.2019.02.001
A spatially varying change points model for monitoring glaucoma progression using visual field data.
S. Berchuck (2019)
10.1109/TVCG.2010.119
Drawing Euler Diagrams with Circles: The Theory of Piercings
G. Stapleton (2011)
10.1167/IOVS.06-0576
Monitoring glaucomatous visual field progression: the effect of a novel spatial filter.
N. Strouthidis (2007)
10.1167/IOVS.05-1584
Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement.
N. Strouthidis (2006)
10.3928/01913913-20100719-06
Longitudinal study of optic cup progression in children.
Hee-Jung S. Park (2011)
10.1016/J.OGLA.2018.11.004
Detecting Glaucoma Progression Using Guided Progression Analysis with OCT and Visual Field Assessment in Eyes Classified by International Classification of Disease Severity Codes.
A. Nguyen (2019)
10.2147/OPTH.S44586
Strategies for improving early detection of glaucoma: the combined structure–function index
A. Tatham (2014)
10.1080/02713680802277692
Morpho-Functional Follow-Up of the Optic Nerve in Treated Ocular Hypertension: Disc Morphometry and Steady-State Pattern Electroretinogram
T. Salgarello (2008)
10.1185/03007990903098867
Unpredictability of glaucoma progression
R. Susanna (2009)
10.1097/ICU.0b013e3282f4b1c2
New developments in scanning laser polarimetry for glaucoma
H. Lemij (2008)
10.1097/IJG.0000000000000046
Rates and Patterns of Macular and Circumpapillary Retinal Nerve Fiber Layer Thinning in Preperimetric and Perimetric Glaucomatous Eyes
J. Na (2015)
Glokom Tanisinda Heidelberg Retinal Tomografi Heidelberg Retinal Tomography in Glaucoma Diagnosis
Ilgaz Yalvaç (2009)
10.1001/jamaophthalmol.2013.2602
Association between rates of binocular visual field loss and vision-related quality of life in patients with glaucoma.
Renato Lisboa (2013)
10.1016/j.ajo.2011.11.015
Combining structural and functional measurements to improve estimates of rates of glaucomatous progression.
F. Medeiros (2012)
10.1016/j.ajo.2012.07.005
Retinal nerve fiber layer atrophy is associated with visual field loss over time in glaucoma suspect and glaucomatous eyes.
M. Sehi (2013)
10.17925/USOR.2013.06.01.15
Glaucoma Diagnosis and Monitoring Using Advanced Imaging Technologies.
M. Sehi (2013)
10.1109/TITB.2009.2020158
A Framework for Detecting Glaucomatous Progression in the Optic Nerve Head of an Eye Using Proper Orthogonal Decomposition
M. Balasubramanian (2009)
10.1167/iovs.08-2136
Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression.
C. Bowd (2009)
10.1167/iovs.08-1764
Analysis of HRT images: comparison of reference planes.
A. Poli (2008)
10.3109/02713683.2012.742913
Progression of Retinal Nerve Fiber Layer Thinning in Glaucoma Assessed by Cirrus Optical Coherence Tomography-guided Progression Analysis
J. Na (2013)
See more
Semantic Scholar Logo Some data provided by SemanticScholar