Online citations, reference lists, and bibliographies.
← Back to Search

The Effects Of Drought On Barley Growth: Models And Measurements Showing The Relative Importance Of Leaf Area And Photosynthetic Rate

B. J. Legg, W. Day, D. W. Lawlor, K. J. Parkinson

Cite This
Download PDF
Analyze on Scholarcy
Share
SUMMARYIn a field experiment on the effects of drought on spring barley the crop was protected from rain by automatic rain shelters. Various plots received irrigation at different times to give a range of drought treatments from full irrigation to no irrigation between emergence and harvest. The foliage area, light interception, stomatal resistance and leaf photosynthesis rate of five treatments were measured throughout the growing season, and a mathematical model has related the computed whole canopy photosynthesis to the measured total dry-matter yields at harvest. Hence, it was possible to estimate tha independent influences of drought on radiation interception, efficiency of use of intercepted radiation, and respiration. The analysis shows that for all treatments the decrease of intercepted radiation was the major factor in reducing yield, and it accounted for a loss of 30–40% for treatments that were stressed from the beginning of the season, and of 10–20% for treatments that were stressed after mid-May. Stomatal closure caused a reduction of up to 11% in daily photosynthesis, and the maximum effect was on plants that acquired a large leaf area before being stressed. However, the effect of stomatal closure integrated over the whole season was only 6% or less. Our measurements of internal resistance to carbon dioxide transfer were not precise enough to show significant differences between treatments; but increases of internal resistance, caused by stress, may have contributed to loss of yield.