Online citations, reference lists, and bibliographies.
← Back to Search

Carbon Nanotube Linear Bearing Nanoswitches.

V. Deshpande, H-Y Chiu, H. Postma, C. Mikó, L. Forró, M. Bockrath
Published 2006 · Medicine, Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
We exploit the remarkable low-friction bearing capabilities of multiwalled carbon nanotubes (MWNTs) to realize nanoelectromechanical switches. Our switches consist of two open-ended MWNT segments separated by a nanometer-scale gap. Switching occurs through electrostatically actuated sliding of the inner nanotube shells to close the gap, producing a conducting ON state. For double-walled nanotubes in particular, a gate voltage can restore the insulating OFF state. Acting as a nonvolatile memory element capable of several switching cycles, our devices are straightforward to implement, self-aligned, and do not require complex fabrication or geometries, allowing for convenient scalability.
This paper references
10.1016/J.CPLETT.2004.09.150
Opening and closing of single-wall carbon nanotubes
H. Z. Geng (2004)
10.1126/SCIENCE.289.5479.560
Beyond Gedanken Experiments
L. Forró (2000)
Nanotube nanotweezers
Kim (1999)
10.1103/PHYSREVLETT.94.236802
Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes.
J. Huang (2005)
NANOTECHNOLOGY: Beyond Gedanken Experiments.
L. Forró (2000)
10.1038/nature01823
Rotational actuators based on carbon nanotubes
A. Fennimore (2003)
10.1063/1.2077858
Nanoelectromechanical switches with vertically aligned carbon nanotubes
J. Jang (2005)
10.1126/SCIENCE.289.5479.602
Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes
Cumings (2000)
10.1063/1.2126805
Self-assembled switches based on electroactuated multiwalled nanotubes
E. Dujardin (2005)
10.1088/2058-7058/14/2/29
Nanoelectromechanical systems face the future
M. Roukes (2001)
10.1126/SCIENCE.289.5476.94
Carbon nanotube-based nonvolatile random access memory for molecular computing
Rueckes (2000)
10.1103/PhysRevLett.95.226101
Ballistic phonon thermal transport in multiwalled carbon nanotubes.
H-Y Chiu (2005)
10.1103/PHYSREVLETT.88.045503
Multiwalled carbon nanotubes as gigahertz oscillators.
Quanshui Zheng (2002)
10.1021/nl035217g
Carbon Nanotube Based Bearing for Rotational Motions
B. Bourlon (2004)
10.1143/JJAP.42.4830
Interlayer Sliding Force of Individual Multiwall Carbon Nanotubes
S. Akita (2003)
10.1038/128617a0
Strength of Materials.
S. Timoshenko (1931)
10.1063/1.1868064
Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube
S. N. Cha (2005)
10.1021/NL049053V
A Three-Terminal Carbon Nanorelay
Y. Park (2004)
10.1007/S100510050219
Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface
S. Hudlet (1998)
10.1103/PHYSREVLETT.86.3128
Current saturation and electrical breakdown in multiwalled carbon nanotubes.
P. G. Collins (2001)
10.1063/1.1557324
A carbon-nanotube-based nanorelay
J. Kinaret (2003)
10.1103/PhysRevLett.90.055504
Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators.
S. B. Legoas (2003)



This paper is referenced by
10.1088/0256-307X/31/8/086101
Engineering Double-Walled Carbon Nanotubes by Ar Plasma *
Y. Zhang (2014)
10.1002/smll.201001166
Robust carbon-nanotube-based nano-electromechanical devices: understanding and eliminating prevalent failure modes using alternative electrode materials.
Owen Y. Loh (2011)
10.1007/S00339-016-9751-1
Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity
M. Arda (2016)
10.1016/J.COMMATSCI.2018.01.017
Computational study of CNT based nanoscale reversible mass transport archival memory with Fe, Co and Ni nano-shuttles
Bikash Sharma (2018)
10.1016/B978-0-323-41481-4.00006-X
Stimuli-Responsive Materials From Carbon Nanotubes
Sisi He (2017)
10.1016/j.commatsci.2011.09.002
Can barrier to relative sliding of carbon nanotube walls be measured
A. Popov (2012)
10.1016/S1369-7021(08)70120-2
Nanotube-based data storage devices
E. Bichoutskaia (2008)
Molecular Dynamics Simulations of Nonvolatile Carbon Nanotube Shuttle Memory
O. K. Kwon (2007)
10.1109/ROBOT.2010.5509275
Rotary nanomotors based on head-to-head nanotube shuttles
M. Hamdi (2010)
10.1109/ICEDSS.2017.8073695
Finite element method simulation of graphene nanoelectromechanical contact switches with surface trenches
Kulothungan Jothiramalingam (2017)
10.1063/1.5120382
A three-stage rotary transmission nanobearing driven by a gigahertz nanomotor
Dong Liang (2019)
10.1002/9781119083887.CH5
MEMS/NEMS Switches with Silicon to Silicon (Si-to-Si) Contact Interface
C. Lee (2015)
10.1016/J.PHYSREP.2011.08.002
Electron transport through molecular junctions
N. Zimbovskaya (2011)
10.1186/1556-276X-6-245
Defect-related hysteresis in nanotube-based nano-electromechanical systems
L. Tsetseris (2011)
10.1088/0957-4484/18/9/095705
Electrostatically telescoping nanotube nonvolatile memory device
J. Kang (2007)
10.1039/c0cp02614j
Interlayer interaction and relative vibrations of bilayer graphene.
I. Lebedeva (2011)
10.1088/1361-6463/ab7e61
Fabrication of a nanoelectromechanical bistable switch using directed assembly of SWCNTs
S. A. Abbasi (2020)
10.1515/ijnsns.2011.300
Analytical Method for Determination of Young’s Modulus of Large Deflection Carbon Nanotube
N. Tolou (2011)
10.1002/advs.201700588
Nanogap‐Engineerable Electromechanical System for Ultralow Power Memory
J. Zhang (2018)
10.1088/1361-6528/aa930a
Friction effect of stator in a multi-walled CNT-based rotation transmission system.
X. Zhang (2018)
10.1088/0957-4484/20/49/495704
Stability and analysis of configuration-tunable bi-directional MWNT bearings.
A. Subramanian (2009)
10.3938/JKPS.64.1586
Engineering the resonance frequency of carbon-nanotube oscillators via a telescoping outertube
J. Kang (2014)
10.1016/J.PHYSE.2016.08.003
Multi-layer graphene membrane based memory cell
A. Siahlo (2016)
10.1126/science.1155559
Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes
Amelia Barreiro (2008)
10.1088/0957-4484/19/25/255705
Trans-phonon effects in ultra-fast nanodevices.
Z. Xu (2008)
10.1016/J.CARBON.2010.09.061
Defect formation and hysteretic inter-tube displacement in multi-wall carbon nanotubes
L. Tsetseris (2011)
10.1007/978-3-642-30490-3_9
Potential Applications of Carbon Nanotube Arrays
Z. Ren (2012)
10.1007/S00339-007-4128-0
Local control of electric current driven shell etching of multiwalled carbon nanotubes
A. Subramanian (2007)
10.1134/S1063785009070232
Ab initio calculations of the walls shear strength of carbon nanotubes
E. Bichoutskaia (2009)
10.1557/MRS2008.47
Carbon nanotube electroactive polymer materials: opportunities and challenges
L. Qu (2008)
10.1039/c9nr07493g
Light-controlled nanoswitches: from fabrication to photoelectric switching.
Yunxia Wang (2019)
10.3390/CRYST8040149
Sliding Dynamics of Parallel Graphene Sheets: Effect of Geometry and Van Der Waals Interactions on Nano-Spring Behavior
A. Crisafulli (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar