Online citations, reference lists, and bibliographies.
← Back to Search

Addition Of Chitosan To Silicate Cross-linked PEO For Tuning Osteoblast Cell Adhesion And Mineralization.

A. Gaharwar, Patrick J. Schexnailder, Q. Jin, C. Wu, G. Schmidt
Published 2010 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
The addition of chitosan to silicate (Laponite) cross-linked poly(ethylene oxide) (PEO) is used for tuning nanocomposite material properties and tailoring cellular adhesion and bioactivity. By combining the characteristics of chitosan (which promotes cell adhesion and growth, antimicrobial) with properties of PEO (prevents protein and cell adhesion) and those of Laponite (bioactive), the resulting material properties can be used to tune cellular adhesion and control biomineralization. Here, we present the hydration, dissolution, degradation, and mechanical properties of multiphase bio-nanocomposites and relate these to the cell growth of MC3T3-E1 mouse preosteoblast cells. We find that the structural integrity of these bio-nanocomposites is improved by the addition of chitosan, but the release of entrapped proteins is suppressed. Overall, this study shows how chitosan can be used to tune properties in Laponite cross-linked PEO for creating bioactive scaffolds to be considered for bone repair.
This paper references
Acta Biomater
D Depan (2009)
Annu. Rev. Biomed. Eng
B D Ratner (2004)
J. Mater. Chem. Biomaterials Biomaterials Biomaterials Biomaterials
A M Martins (1997)
Biomacromolecules
S Zivanovic (2007)
Macromol. Biosci
Q Jin (2009)
J. Mater. Sci.: Mater. Med
H Zhuang (2007)
Adv. Funct. Mater
A K Gaharwar (2010)
Biomed. Mater. Res., Part A
K Cai (2002)
J. Eur. Ceram. Soc
L L Hench (2009)
Bone Miner. Res
D Wang (1999)
Jayakumar, R. Chem. Eng. J
M Peter (2010)
Biomacromolecules
Y Zhou (2007)
Appl. Clay Sci
M Darder (2005)
Acta Biomater
P B Malafaya (2009)
AND NOTES Biotechnol. Adv. Biomaterials
D L Nettles (2002)
Acta Biomater
D S Couto (2009)
J. Cell Biol
H Sudo (1983)
Soil Sci
C E Clapp (1972)
Biomed. Mater. Res., Part A
Y.-C Kuo (2008)
Biomacromolecules
D F Coutinho (2008)
Clin. Biochem
B Porstmann (1989)
Eur. Polym. J
M R Guilherme (2010)
Biomacromolecules
X Yang (2009)
Rheology: Principles, Measurements, and Applications
C. Macosko (1994)
React. Funct. Polym
J P Zheng (2007)
10.1179/174328408x369933
Biomaterials
R. Misra (2008)
Biomacromolecules
R.-N Chen (2006)
Biomed. Mater. Res., Part A
M D Weir (2010)
J. Cell. Biochem
L Malaval (1999)
N. J. Biomed. Mater. Res., Part A
F Tadanao (2005)
Biomacromolecules
Y.-C Kuo (2008)
Zheng, Q. J. Controlled Release
X Niu (2009)
Am100609t Article Www
Macromol. Biosci
P J Schexnailder (2010)
10.1126/science.225.4658.197
Materials
L. Napolitano (1984)
Bone Miner. Res
G Rawadi (2003)
Chem. Mater
M Darder (2003)
Biomed. Mater. Res., Part A
J J Blaker (2003)
J. Appl. Polym. Sci
K Kabiri (2010)
37) Kim, B.; Peppas
P L Ritger (1987)
J. Am. Ceram. Soc
L H Larry (1991)
Macromol. Rapid Commun
A Dundigalla (2005)
Curr. Opin. Cell Biol
A Mammoto (2009)



This paper is referenced by
10.1155/2013/728130
The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials
Xiaoming Li (2013)
10.1007/978-1-4471-4108-2_14
Chitosan-Clay Bio-Nanocomposites
M. Darder (2012)
10.1007/s11517-020-02157-1
Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: an in vitro and in vivo evaluation
A. Bagherifard (2020)
Programmable Dna Delivery To Cells Using Bioreducible Layer-By-Layer (lbl) Polyelectrolyte Thin Films
María Muñiz (2015)
10.1021/am502537k
Antibiotic-loaded chitosan hydrogel with superior dual functions: antibacterial efficacy and osteoblastic cell responses.
Fang Wu (2014)
10.1002/adma.201900332
2D Nanoclay for Biomedical Applications: Regenerative Medicine, Therapeutic Delivery, and Additive Manufacturing.
A. Gaharwar (2019)
10.1002/9781119441632.CH158
Biocomposites from Renewable Resources: Preparation and Applications of Chitosan–Clay Nanocomposites
A. B. Reddy (2017)
10.1021/IE501891T
Tailoring of Clay/Poly(ethylene oxide) Hydrogel Properties by Chitosan Incorporation
S. Morariu (2014)
10.1016/j.actbio.2011.07.023
Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles.
A. Gaharwar (2011)
10.1002/adhm.201701213
Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics.
A. Vashist (2018)
10.1007/978-81-322-2511-9_6
Chitin and Chitosan Nanocomposites for Tissue Engineering
A. Mahanta (2016)
10.1002/adma.201301034
Clay: new opportunities for tissue regeneration and biomaterial design.
J. Dawson (2013)
10.1021/bm200027z
Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles.
A. Gaharwar (2011)
10.1016/J.CLAY.2013.08.049
Physico-chemical, mechanical and cytotoxicity characterizations of Laponite®/alginate nanocomposite
M. Ghadiri (2013)
10.1039/C2SM25123J
Mechanically robust PEGDA–MSNs-OH nanocomposite hydrogel with hierarchical meso-macroporous structure for tissue engineering
Shengbing Yang (2012)
10.1016/j.jmbbm.2014.08.014
Development, mechanical evaluation and surface characteristics of chitosan/polyvinyl alcohol based polymer composite coatings on titanium metal.
S. Mishra (2014)
10.24377/LJMU.T.00007684
The development and evaluation of antibacterial polymer-phyllosilicate composite systems for the treatment of infected wounds
A. R. Hamilton (2017)
10.1557/JMR.2018.260
Novel 3D-printed methacrylated chitosan-laponite nanosilicate composite scaffolds enhance cell growth and biomineral formation in MC3T3 pre-osteoblasts
Tugba Cebe (2020)
10.1007/s10904-013-9950-6
Konjac Glucomannan/Poly(vinyl alcohol)/Na+Rectorite Nanocomposite Films: Structure, Characteristic and Drug Delivery Behaviour
Lianli Yang (2013)
10.1002/MAME.201800213
Strategy for Preparing Mechanically Strong Hyaluronic Acid–Silica Nanohybrid Hydrogels via In Situ Sol–Gel Process
H. Lee (2018)
10.1021/la200620s
Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel.
Wen Jing Yang (2011)
10.1002/jbm.b.34487
Chitosan-laponite nanocomposite scaffolds for wound dressing application.
V. A. M. Gonzaga (2019)
10.1021/acs.biomac.5b01557
Strong and Biostable Hyaluronic Acid-Calcium Phosphate Nanocomposite Hydrogel via in Situ Precipitation Process.
Seol-Ha Jeong (2016)
10.1016/j.biomaterials.2014.07.052
The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets.
S. Mihaila (2014)
10.1039/C1SM06513K
Shear-thinning hydrogels for biomedical applications
M. Guvendiren (2012)
10.1039/C7RA13452E
LAPONITE® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds
Liangchen Tang (2018)
10.1002/mabi.201400363
Self-assembled monolayers and nanocomposite hydrogels of functional nanomaterials for tissue engineering applications.
Nermin Seda Kehr (2015)
10.1016/j.biomaterials.2017.12.024
Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.
M. Mousa (2018)
10.1089/ten.TEA.2012.0644
Evaluation of multifunctional polysaccharide hydrogels with varying stiffness for bone tissue engineering.
V. Pandit (2013)
10.1039/C8NJ01316K
A phosphorylated chitosan armed hydroxyapatite nanocomposite for advancing activity on osteoblast and osteosarcoma cells
M. Sumathra (2018)
10.1002/9783527807130.CH1
Clay–Organic Interfaces for Design of Functional Hybrid Materials
P. Aranda (2017)
10.1016/j.carbpol.2013.01.068
Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration.
G. Toskas (2013)
See more
Semantic Scholar Logo Some data provided by SemanticScholar