Online citations, reference lists, and bibliographies.
← Back to Search

Highly Extensible, Tough, And Elastomeric Nanocomposite Hydrogels From Poly(ethylene Glycol) And Hydroxyapatite Nanoparticles.

A. Gaharwar, Sandhya A Dammu, Jamie M. Canter, C. Wu, G. Schmidt
Published 2011 · Medicine, Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
Unique combinations of hard and soft components found in biological tissues have inspired researchers to design and develop synthetic nanocomposite gels and hydrogels with elastomeric properties. These elastic materials can potentially be used as synthetic mimics for diverse tissue engineering applications. Here we present a set of elastomeric nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and hydroxyapatite nanoparticles (nHAp). The aqueous nanocomposite PEG-nHAp precursor solutions can be injected and then covalently cross-linked via photopolymerization. The resulting PEG-nHAp hydrogels have interconnected pore sizes ranging from 100 to 300 nm. They have higher extensibilities, fracture stresses, compressive strengths, and toughness when compared with conventional PEO hydrogels. The enhanced mechanical properties are a result of polymer nanoparticle interactions that interfere with the permanent cross-linking of PEG during photopolymerization. The effect of nHAp concentration and temperature on hydrogel swelling kinetics was evaluated under physiological conditions. An increase in nHAp concentration decreased the hydrogel saturated swelling degree. The combination of PEG and nHAp nanoparticles significantly improved the physical and chemical hydrogel properties as well as some biological characteristics such as osteoblast cell adhesion. Further development of these elastomeric materials can potentially lead to use as a matrix for drug delivery and tissue repair especially for orthopedic applications.
This paper references
J. Am. Ceram. Soc
L H Larry (1991)
10.1039/C0SM00067A
PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold
Chien-Wen Chang (2010)
10.1016/S0142-9612(02)00175-8
Photopolymerizable hydrogels for tissue engineering applications.
K. Nguyen (2002)
10.1016/S0168-3659(99)00027-9
Poly(ethylene glycol)-containing hydrogels in drug delivery.
N. Peppas (1999)
Macromol. Rapid Commun
A K Gaharwar (2011)
10.1039/B604966B
A perspective on nanophase materials for orthopedic implant applications
G. Balasundaram (2006)
10.1097/00006534-199909040-00017
Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage.
J. Elisseeff (1999)
10.1126/science.1169494
Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties
April M Kloxin (2009)
M Iza
10.1021/JP0128426
Micromechanical Properties of “Smart” Gels: Studies by Scanning Force and Scanning Electron Microscopy of PNIPAAm
T. Matzelle (2001)
10.1089/teb.2007.0150
Three-dimensional cell culture matrices: state of the art.
J. Lee (2008)
A K Gaharwar (2011)
10.1146/ANNUREV.MATSCI.28.1.271
THE MATERIAL BONE: Structure-Mechanical Function Relations
Steve Weiner (1998)
10.1016/S0169-409X(01)00239-3
Hydrogels for biomedical applications.
A. Hoffman (2002)
10.1007/978-1-4899-0703-5
Poly(Ethylene Glycol) Chemistry
J. M. Harris (1992)
10.1126/SCIENCE.1143176
Ultrastrong and Stiff Layered Polymer Nanocomposites
P. Podsiadlo (2007)
Compos. Sci. Technol
R Murugan (2005)
10.1021/am100609t
Addition of chitosan to silicate cross-linked PEO for tuning osteoblast cell adhesion and mineralization.
Akhilesh K. Gaharwar (2010)
10.1002/(SICI)1097-4636(20000315)49:4<517::AID-JBM10>3.0.CO;2-8
Synthesis and characterization of dextran-methacrylate hydrogels and structural study by SEM.
S. Kim (2000)
Biomed. Mater. Res., Part A
J Song (2009)
10.1126/SCIENCE.1064829
Taking Cell-Matrix Adhesions to the Third Dimension
E. Cukierman (2001)
10.1016/J.POLYMER.2008.04.017
Polymer nanotechnology: Nanocomposites
D. R. Paul (2008)
10.1021/CR000108X
Hydrogels for tissue engineering.
K. Lee (2001)
10.1111/J.1151-2916.1991.TB07132.X
Bioceramics: From Concept to Clinic
L. Hench (1991)
10.1179/174328408x369933
Biomaterials
R. Misra (2008)
10.1002/marc.201000556
Highly extensible bio-nanocomposite fibers.
A. Gaharwar (2011)
10.1002/ADMA.200501612
Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology†
N. A. Peppas (2006)
10.1002/adma.200904016
High-strength hydrogels with integrated functions of H-bonding and thermoresponsive surface-mediated reverse transfection and cell detachment.
L. Tang (2010)
10.1002/ADMA.200802205
Nanocomposite Hydrogel with High Toughness for Bioactuators
M. Shin (2009)
ACS Appl. Mater. Interfaces
A K Gaharwar (2010)
J. Chem. Soc. Rev
L Yu (2008)
Nat. Biotechnol
Y Wang (2002)
10.1038/nature08693
High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder
Q. Wang (2010)
Polymer Chemistry: The Basic Concepts
Paul C. Hiemenz (1984)
R T Olsson (2010)
10.1038/424870a
Cell culture: Biology's new dimension
A. Abbott (2003)
10.1016/S0168-3659(97)00191-0
Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug.
M. Iza (1998)
10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De‐swelling Properties
K. Haraguchi (2002)
10.1126/science.1153307
Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis
J. R. Capadona (2008)
Macromolecules
M Fukasawa (2010)
Poly(Ethylene Glycol) Chemistry Biotechnical and Biomedical Applications
J. M. Harris (1992)
10.1016/j.actbio.2010.09.015
Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization.
A. Gaharwar (2011)
10.1016/j.biomaterials.2008.08.037
Biodegradable poly(polyol sebacate) polymers.
J. Bruggeman (2008)
Macromolecules
E Loizou (2010)
10.1016/J.ADDR.2007.03.013
Injectable matrices and scaffolds for drug delivery in tissue engineering.
J. Kretlow (2007)
10.1002/adma.200802009
Injectable biomaterials for regenerating complex craniofacial tissues.
J. Kretlow (2009)
10.1021/MA100419C
Synthesis and Mechanical Properties of a Nanocomposite Gel Consisting of a Tetra-PEG/Clay Network
Mieko Fukasawa (2010)
Chem. Rev
K Y Lee (2001)
Adv. Mater
N A Peppas (2006)
10.1016/J.COMPSCITECH.2005.07.022
Development of nanocomposites for bone grafting
R. Murugan (2005)
10.1038/nbt0602-602
A tough biodegradable elastomer
Y. Wang (2002)
Adv. Mater
S Suri (2002)
Varghese, S. Soft Matter
C.-W Chang (2010)
Annu. Rev. Mater. Sci
S Weiner (1998)
J. Controlled Release
N A Peppas (1999)
J. Biomater. Sci., Polym. Ed
J Zhang (2002)
10.1002/jbm.a.32110
Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications.
Jie Song (2009)
10.1126/SCIENCE.1140171
Hydrogel Cell Cultures
Melinda C. Cushing (2007)
10.1016/S0142-9612(03)00340-5
Hydrogels for tissue engineering: scaffold design variables and applications.
Jeanie L Drury (2003)
10.1016/j.actbio.2009.05.004
Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
Shalu Suri (2009)
Nat. Nanotechnol
Y S Pek (2008)
J. Controlled Release
(1998)
Adv. Mater
M K Shin (2009)
J. Mater. Chem
Q Hu (2007)
Polymer Chemistry: The Basic Concepts; M
P Hiemenz (1984)
Adv. Mater
L Tang (2010)
10.1002/ADFM.200901606
Highly Extensible Bio-Nanocomposite Films with Direction-Dependent Properties
A. Gaharwar (2010)
10.1038/nnano.2010.155
Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates.
R. T. Olsson (2010)
10.1016/J.BIOMATERIALS.2005.11.029
Microfabrication of poly (glycerol-sebacate) for contact guidance applications.
C. Bettinger (2006)
10.1039/b713009k
Injectable hydrogels as unique biomedical materials.
Lin Yu (2008)
10.1038/nnano.2008.270
A thixotropic nanocomposite gel for three-dimensional cell culture.
Y. Pek (2008)
Adv. Funct. Mater
A K Gaharwar (2010)
10.1002/9780470891315.CH6
Injectable Hydrogels as Biomaterials
Lakshmi Nair (2010)
10.1016/J.EJPB.2004.03.019
In situ-forming hydrogels--review of temperature-sensitive systems.
È. Ruel-Gariépy (2004)
10.1016/j.otohns.2009.05.016
Nature
R. Rosenfeld (2009)
10.1016/J.BIOMATERIALS.2007.07.021
Microengineered hydrogels for tissue engineering.
A. Khademhosseini (2007)
Drug Delivery Rev
A S Hoffman (2002)
Adv. Mater
J D Kretlow (2009)
J. Mater. Chem
M R Rogel (2008)
Polymer
D R Paul (2008)
10.1016/j.ijpharm.2008.01.057
In situ gelling hydrogels for pharmaceutical and biomedical applications.
Sophie R. Van Tomme (2008)
10.1089/ten.tea.2008.0441
Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks.
M. Brigham (2009)
Tissue Eng., Part A
M D Brigham (2009)
Biomacromolecules
K Haraguchi (2006)
Tissue Eng. Part B
J Lee (2008)
Angew. Chem
R Tang (2004)
10.1039/B710936A
Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells
Q. Hu (2007)
10.1007/978-0-387-30440-3_409
Polymer Physics
T. C. McLeish (2009)
10.1163/15685620260178373
Morphology of poly(methacrylic acid)/poly(N-isopropyl acrylamide) interpenetrating polymeric networks
J. Zhang (2002)
10.1039/B804692A
The role of nanocomposites in bone regeneration
Micah R. Rogel (2008)
10.1016/S1369-7021(07)70078-0
ZnO - nanostructures, defects, and devices
L. Schmidt-Mende (2007)
J. Mater. Chem
G Balasundaram (2006)
Int. J. Pharm
S R Tomme (2008)
10.1021/BM060549B
Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels.
K. Haraguchi (2006)
10.1021/MA9019448
Shear-Induced Nanometer and Micrometer Structural Responses in Nanocomposite Hydrogels
E. Loizou (2010)
10.1016/S0142-9612(99)00242-2
Osteoblast adhesion on biomaterials.
K. Anselme (2000)
10.1016/S0142-9612(02)00176-X
Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering.
J. Burdick (2002)
Eur. J. Pharm. Biopharm
E Ruel-Gari Epy (2004)
Drug Delivery Rev
J D Kretlow (2007)
Biomed. Mater. Res. N. J. Phys. Chem. B
S H Kim (2000)
10.1097/00004669-199701000-00009
Biomaterials Science: An Introduction to Materials in Medicine
B. Ratner (1996)



This paper is referenced by
10.1016/j.colsurfb.2015.05.008
Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.
R. Hou (2015)
10.1016/j.msec.2017.02.088
Simultaneous formation and mineralization of star-P(EO-stat-PO) hydrogels.
Martha Schamel (2017)
10.1007/978-3-319-76735-2_9
Nanoparticles-Based Systems for Osteochondral Tissue Engineering.
Isabel Tomãs de Oliveira (2018)
Robust, degradable peg-based collagen hydrogels for elastomeric tissue augmentation
Charles W. Peak (2014)
10.1002/marc.201800212
Cytocompatible Fabrication of Yeast Cells/Fabrics Composite Sheet for Bioethanol Production.
Bin He (2018)
10.1039/C6RA04762A
Hydrophobic association hydrogels based on N-acryloyl-alanine and stearyl acrylate using gelatin as emulsifier
Zhao Cui (2016)
10.1021/acsami.6b02740
Mechanically Stiff, Zinc Cross-Linked Nanocomposite Scaffolds with Improved Osteostimulation and Antibacterial Properties.
R. R. Sehgal (2016)
10.1039/c8cc07475e
Self-assembled adhesive biomaterials formed by a genetically designed fusion protein.
Pulakesh Aich (2018)
10.1002/ADFM.201901407
3D Superelastic Scaffolds Constructed from Flexible Inorganic Nanofibers with Self‐Fitting Capability and Tailorable Gradient for Bone Regeneration
Lihuan Wang (2019)
Polymeric and Soft Nanocomposites Based on Cyclodextrin-Modified Barium Titanate Nanoparticles
R. Gómez (2016)
10.1021/am504566v
Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity
Y. Liu (2014)
10.1002/adma.201603612
Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissues.
Mehdi Mehrali (2017)
10.1016/j.carbpol.2017.08.070
Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material.
Nasim Golafshan (2017)
10.1016/J.CEJ.2019.03.149
A green strategy to endow superabsorbents with stretchability and self-healability
A. Jahandideh (2019)
10.1039/c7nr04722c
A self-healable and tough nanocomposite hydrogel crosslinked by novel ultrasmall aluminum hydroxide nanoparticles.
Haoyang Jiang (2017)
10.1016/B978-0-08-100785-3.00012-7
Biomedical applications of hybrid polymer composite materials
Burhan Ates (2017)
10.1002/MACP.201400427
Bioinspired Polymeric Nanocomposites for Regenerative Medicine
James K Carrow (2015)
10.1021/bm301703x
Injectable superparamagnets: highly elastic and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels.
Scott B. Campbell (2013)
10.1177/0885328213506951
Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration
J. Alexander Killion (2014)
10.1007/978-3-319-22861-7_15
Biomimetic approach to designing adhesive hydrogels: from chemistry to application
Yuting Li (2016)
10.1007/s10853-015-9382-5
A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers
Stefanie Utech (2015)
10.1016/J.COMPSCITECH.2018.07.018
Hierarchically crosslinked ionic nanocomposite hydrogels with ultrahigh mechanical properties for underwater bioinspired capturing device
F. Li (2018)
10.1002/jbm.a.36754
Novel multicomponent organic-inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering.
Michal Dziadek (2019)
10.1002/9783527698646.CH12
Engineering Nanobiomaterials for Improved Tissue Regeneration
Liping Xie (2017)
10.1002/APP.45761
Preparation and property of starch nanoparticles reinforced aldehyde–hydrazide covalently crosslinked PNIPAM hydrogels
Shanshan Li (2018)
10.1021/acs.langmuir.7b02540
Nanoengineered Colloidal Inks for 3D Bioprinting.
Charles W. Peak (2018)
10.1021/am201212u
New approach to bone tissue engineering: simultaneous application of hydroxyapatite and bioactive glass coated on a poly(L-lactic acid) scaffold.
P. Dinarvand (2011)
10.1002/pola.28368
Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein
Pegah Kord Forooshani (2017)
10.1016/j.jmbbm.2020.103922
Stereolithographic fabrication of three-dimensional permeable scaffolds from CaP/PEGDA hydrogel biocomposites for use as bone grafts.
A. Tikhonov (2020)
10.1007/s13770-015-0102-7
Physically-strengthened collagen bioactive nanocomposite gels for bone: A feasibility study
J. Lee (2015)
10.3390/nano8110882
Exploring the Role of Nanoparticles in Enhancing Mechanical Properties of Hydrogel Nanocomposites
J. Zaragoza (2018)
10.3183/npprj-2014-29-01-p095-104
Mechanically tunable nanocomposite hydrogels based on functionalized cellulose nanocrystals
S. Atifi (2014)
See more
Semantic Scholar Logo Some data provided by SemanticScholar