Online citations, reference lists, and bibliographies.
← Back to Search

Structure Of The Cro Repressor From Bacteriophage λ And Its Interaction With DNA

W. Anderson, D. Ohlendorf, Y. Takeda, B. Matthews
Published 1981 · Biology

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The three-dimensional structure of the 66-amino acid cro repressor protein of bacteriophage λ suggests how it binds to its operator DNA. We propose that a dimer of cro protein is bound to the B-form of DNA with the 2-fold axis of the dimer coincident with the 2-fold axis of DNA. A pair of 2-fold-related α-helices of the represser, lying within successive major grooves of the DNA, seem to be a major determinant in recognition and binding. In addition, the C-terminal residues of the protein, some of which are disordered in the absence of DNA, appear to contribute to the binding.
This paper references
10.1016/0092-8674(80)90383-9
How the λ repressor and cro work
M. Ptashne (1980)
10.1016/0022-2836(72)90569-4
The structure of thermolysin: an electron density map at 2-3 A resolution.
P. Colman (1972)
10.1073/PNAS.76.10.5061
Interactions between DNA-bound repressors govern regulation by the λ phage repressor
A. Johnson (1979)
10.1016/0022-2836(79)90238-9
Specific repression of in vitro transcription by the Cro repressor of bacteriophage lambda.
Y. Takeda (1979)
10.1016/0022-2836(79)90437-6
The structure of a repressor: crystallographic data for the Cro regulatory protein of bacteriophage lambda.
W. Anderson (1979)
10.1016/B978-0-12-516303-3.50009-9
4 – X-Ray Structure of Proteins
B. Matthews (1977)
10.1016/0022-2836(68)90085-5
The matching of physical models to three-dimensional electron-density maps: a simple optical device.
F. Richards (1968)
10.1146/ANNUREV.GE.06.120172.001105
Developmental pathways for the temperate phage: lysis vs lysogeny,.
H. Echols (1972)
10.1038/237322A0
How lac Repressor Binds to DNA
K. Adler (1972)
10.1038/270275A0
Amino acid sequence of Cro regulatory protein of bacteriophage lambda
MYRTLE W. Hsiang (1977)
10.1073/PNAS.74.4.1458
Secondary structural complementarity between DNA and proteins.
G. Church (1977)
10.1073/PNAS.67.3.1616
Modification of histones during spermiogenesis in trout: a molecular mechanism for altering histone binding to DNA.
M. Sung (1970)
10.1146/ANNUREV.GE.07.120173.001445
Control of gene expression in bacteriophage lambda.
I. Herskowitz (1973)
10.1006/dbio.2001.0547
The Molecular Genetics of Development
T. Leighton (1980)
10.1038/171737a0
Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid
J. Watson (1953)
10.1107/S0365110X59002274
The treatment of errors in the isomorphous replacement method
D. Blow (1959)
10.1038/271130A0
α-Helix–double helix interaction shown in the structure of a protamine-transfer RNA complex and a nucleoprotamine model
R. W. Warrant (1978)
10.1107/S0567739474010722
Geometric sources of redundancy in intensity data and their use for phase determination
G. Bricogne (1974)
10.1016/s0021-9258(17)40047-0
Cro regulatory protein specified by bacteriophage lambda. Structure, DNA-binding, and repression of RNA synthesis.
Y. Takeda (1977)
10.1126/SCIENCE.959843
Autoregulation and function of a repressor in bacteriophage lambda.
M. Ptashne (1976)
10.1146/ANNUREV.GE.14.120180.002151
The lysis-lysogeny decision of phage lambda: explicit programming and responsiveness.
I. Herskowitz (1980)
10.1016/0022-2836(80)90303-4
Gene regulation at the right operator (OR) of bacteriophage lambda. II. OR1, OR2, and OR3: their roles in mediating the effects of repressor and cro.
B. Meyer (1980)
10.1038/270274A0
Sequence of cro gene of bacteriophage lambda
THOMAS M. Roberts (1977)
10.1073/PNAS.73.7.2249
Purification and properties of a DNA-binding protein with characteristics expected for the Cro protein of bacteriophage lambda, a repressor essential for lytic growth.
A. Folkmanis (1976)
10.1016/0092-8674(75)90018-5
Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda
T. Maniatis (1975)
10.1073/PNAS.75.4.1783
Mechanism of action of the cro protein of bacteriophage lambda.
A. Johnson (1978)
10.1016/0006-291X(72)90243-4
Optimised parameters for A-DNA and B-DNA.
S. Arnott (1972)



This paper is referenced by
10.1016/B978-0-12-501650-6.50014-6
Structural Models for DNA-Protein Recognition
S. Kim (1983)
10.1021/BI00327A020
Lambda phage cro repressor interaction with its operator DNA: 2'-deoxy-5-fluorouracil OR3 analogues.
W. Metzler (1985)
10.1080/07391102.1985.10508440
The absence of non-local conformational changes in OR3 operator DNA on complexing with the cro repressor.
M. P. Kirpichnikov (1985)
10.1126/SCIENCE.6372090
Cyclic AMP receptor protein: role in transcription activation.
B. de Crombrugghe (1984)
10.1016/0378-1119(84)90103-3
Regulation of Mu transposition. I. Localization of the presumed recognition sites for HimD and Ner functions controlling bacteriophage Mu transcription.
N. Goosen (1984)
10.1016/0022-2836(88)90284-7
Organization of the early region of bacteriophage phi 80. Genes and proteins.
T. Ogawa (1988)
10.1126/SCIENCE.3532321
Saturation mutagenesis of the yeast his3 regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein.
D. Hill (1986)
10.1007/978-94-007-0881-5_9
Computational Methods for Predicting DNA-Binding Sites at a Genomic Scale
S. Ahmad (2011)
10.1016/S0378-1119(96)00687-7
Genome structure of the Lactobacillus temperate phage phi g1e: the whole genome sequence and the putative promoter/repressor system.
K. Kodaira (1997)
10.1021/BC00021A006
N-(iodoacetyl)-p-phenylenediamine-EDTA: a reagent for high-efficiency incorporation of an EDTA-metal complex at a rationally selected site within a protein.
Y. Ebright (1993)
10.1038/290736A0
Two DNA-binding proteins
D. Davies (1981)
10.1007/978-1-4614-3229-6_9
Implications of 3D domain swapping for protein folding, misfolding and function.
F. Rousseau (2012)
10.1007/978-1-4612-3652-8_6
Escherichia coli Repressor Proteins
K. L. Wick (1989)
10.1016/0022-2836(89)90441-5
SPXX, a frequent sequence motif in gene regulatory proteins.
M. Suzuki (1989)
10.1007/978-3-642-76569-8_10
The Nucleoproteinic System
Stanley Hoffmann (1991)
10.1038/NSB0198-29
Cro, CAP and λ repressor led the way
Smith Tl (1998)
10.1074/jbc.M307199200
Three-dimensional Structure of MecI
R. García-Castellanos (2003)
10.1016/0022-2836(86)90129-4
Complete nucleotide sequence of the topA gene encoding Escherichia coli DNA topoisomerase I.
Y. Tse-dinh (1986)
10.1016/S0079-6603(08)60710-2
Structure-function relationships in Escherichia coli promoter DNA.
M. Horwitz (1990)
10.1016/0092-8674(83)90355-0
Patterns of λ int recognition in the regions of strand exchange
W. Ross (1983)
10.1007/978-3-642-74022-0_5
Woher wir das alles wissen: die entscheidenden Experimente
M. Ptashne (1989)
10.1016/0022-2836(88)90273-2
Saturation mutagenesis of the Tn10-encoded tet operator O1. Identification of base-pairs involved in Tet repressor recognition.
A. Wissmann (1988)
10.1002/9780470015902.A0002712
Protein Motifs: the Helix‐Turn‐Helix Motif
B. Matthews (2007)
10.1107/S0907444913017320
The DNA-binding domain of BenM reveals the structural basis for the recognition of a T-N11-A sequence motif by LysR-type transcriptional regulators.
A. Alanazi (2013)
10.1016/0022-2836(84)90438-8
Genetic studies of the lac repressor. XII. Amino acid replacements in the DNA binding domain of the Escherichia coli lac repressor.
J. Miller (1984)
10.1016/j.cell.2014.10.047
A Tale of Chromatin and Transcription in 100 Structures
P. Cramer (2014)
10.1021/acs.jpclett.5b00524
Neither Two-State nor Three-State: Dimerization of Lambda Cro Repressor.
John Yao (2015)
10.1006/VIRO.1999.9903
A2 cro, the lysogenic cycle repressor, specifically binds to the genetic switch region of Lactobacillus casei bacteriophage A2.
V. Ladero (1999)
10.1016/0092-8674(86)90523-4
How λ repressor and λ Cro distinguish between OR1 and OR3
A. Hochschild (1986)
10.1007/BF00331636
Molecular analysis of mutant ompR genes exhibiting different phenotypes as to osmoregulation of the ompF and ompC genes of Escherichia coli
F. Nara (2004)
10.1007/bf00260431
1H NMR study of the interaction of bacteriophage lambda Cro protein with the OR3 operator. II. Assignment of the non-exchangeable proton resonances of the OR3 operator.
K. D. Hahn (1985)
10.1016/0022-2836(85)90415-2
Crystallization of the Arc repressor.
S. Jordan (1985)
See more
Semantic Scholar Logo Some data provided by SemanticScholar