Online citations, reference lists, and bibliographies.
← Back to Search

Noninvasive Brain Stimulation: From Physiology To Network Dynamics And Back

E. Dayan, N. Censor, Ethan R. Buch, M. Sandrini, L. Cohen
Published 2013 · Psychology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Noninvasive brain stimulation techniques have been widely used for studying the physiology of the CNS, identifying the functional role of specific brain structures and, more recently, exploring large-scale network dynamics. Here we review key findings that contribute to our understanding of the mechanisms underlying the physiological and behavioral effects of these techniques. We highlight recent innovations using noninvasive stimulation to investigate global brain network dynamics and organization. New combinations of these techniques, in conjunction with neuroimaging, will further advance the utility of their application.
This paper references
10.1523/JNEUROSCI.1396-09.2009
Short-Latency Influence of Medial Frontal Cortex on Primary Motor Cortex during Action Selection under Conflict
R. Mars (2009)
10.1111/j.1460-9568.2007.05795.x
Functional specificity of human premotor–motor cortical interactions during action selection
J. O'Shea (2007)
10.1097/00004691-199101000-00013
Developing a more focal magnetic stimulator. Part I: Some basic principles.
D. Cohen (1991)
10.1002/hbm.21221
The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico‐cortical route
S. Groppa (2012)
10.1113/jphysiol.1964.sp007425
The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long‐lasting after‐effects
L. Bindman (1964)
10.1113/jphysiol.2010.190314
Determinants of the induction of cortical plasticity by non‐invasive brain stimulation in healthy subjects
M. Ridding (2010)
10.1177/1550059412445138
Computational Models of Transcranial Direct Current Stimulation
M. Bikson (2012)
10.1523/JNEUROSCI.5864-11.2012
Occipital Transcranial Magnetic Stimulation Has an Activity-Dependent Suppressive Effect
F. Perini (2012)
10.1126/SCIENCE.1129156
Diminishing Reciprocal Fairness by Disrupting the Right Prefrontal Cortex
D. Knoch (2006)
10.1113/jphysiol.2008.152603
Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans
M. Davare (2008)
10.1111/j.0953-816X.2004.03398.x
GABAergic modulation of DC stimulation‐induced motor cortex excitability shifts in humans
M. Nitsche (2004)
10.1038/NN1002-1017A
Prefontal cortex in long-term memory: an “interference” approach using magnetic stimulation
S. Rossi (2002)
10.1093/cercor/bhp291
State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices.
L. Cattaneo (2010)
10.1006/nimg.2001.0918
Transcranial Magnetic Stimulation Can Be Used to Test Connections to Primary Motor Areas from Frontal and Medial Cortex in Humans
C. Civardi (2001)
10.1113/jphysiol.2008.159905
A common polymorphism in the brain‐derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS
B. Cheeran (2008)
10.1016/j.neuron.2012.08.001
The Spike-Timing Dependence of Plasticity
D. Feldman (2012)
10.1162/089892904323057263
Direct Current Stimulation over V5 Enhances Visuomotor Coordination by Improving Motion Perception in Humans
A. Antal (2004)
10.1113/jphysiol.1973.sp010273
Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path
T. Bliss (1973)
10.1007/s00221-006-0838-3
Effects of 5 Hz subthreshold magnetic stimulation of primary motor cortex on fast finger movements in normal subjects
R. Agostino (2006)
10.1126/SCIENCE.1057099
Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness
A. Pascual-Leone (2001)
10.1523/JNEUROSCI.4882-09.2010
A Network Centered on Ventral Premotor Cortex Exerts Both Facilitatory and Inhibitory Control over Primary Motor Cortex during Action Reprogramming
Ethan R. Buch (2010)
10.1016/j.neuron.2009.03.012
State-Dependent Variability of Neuronal Responses to Transcranial Magnetic Stimulation of the Visual Cortex
Brian N. Pasley (2009)
10.1016/j.brs.2009.12.003
Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans
A. Antal (2010)
10.1093/cercor/bhn144
Paired associative stimulation of left and right human motor cortex shapes interhemispheric motor inhibition based on a Hebbian mechanism.
V. Rizzo (2009)
10.1016/j.neuron.2004.12.033
Theta Burst Stimulation of the Human Motor Cortex
Y. Huang (2005)
10.1016/j.brs.2011.01.002
Triple-pulse TMS to study interactions between neural circuits in human cortex
Zhen Ni (2011)
10.1098/rstb.2005.1652
Inferring causality in brain images: a perturbation approach
T. Paus (2005)
10.1016/j.tics.2008.09.004
State-dependency in brain stimulation studies of perception and cognition
J. Silvanto (2008)
10.1126/SCIENCE.8122113
Modulation of cortical motor output maps during development of implicit and explicit knowledge.
A. Pascual-Leone (1994)
10.1152/JN.01038.2003
Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation.
C. Buetefisch (2004)
10.1113/jphysiol.2005.092429
Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex
M. Nitsche (2005)
10.1113/jphysiol.2008.152736
The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex
V. Di Lazzaro (2008)
10.1016/j.neuron.2007.06.026
Transcranial Magnetic Stimulation: A Primer
M. Hallett (2007)
10.1038/nn1510
Activation of p75NTR by proBDNF facilitates hippocampal long-term depression
N. H. Woo (2005)
10.1186/1743-0003-6-7
Transcranial magnetic stimulation, synaptic plasticity and network oscillations
P. Huerta (2009)
10.1113/jphysiol.1996.sp021734
Interaction between intracortical inhibition and facilitation in human motor cortex.
U. Ziemann (1996)
10.1007/s00221-005-2334-6
Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory
F. Fregni (2005)
10.1113/jphysiol.2009.174086
TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex
G. Koch (2009)
10.1073/pnas.0805413106
Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation
J. Reis (2009)
10.1016/j.clinph.2007.12.001
Improvement of spatial tactile acuity by transcranial direct current stimulation
P. Ragert (2008)
10.1002/ANA.410370603
Magnetic stimulation over the cerebellum in humans
Y. Ugawa (1995)
10.1152/JN.00015.2006
Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex.
J. Silvanto (2006)
10.1093/cercor/bhs040
Compensatory plasticity in the action observation network: virtual lesions of STS enhance anticipatory simulation of seen actions.
A. Avenanti (2013)
a primer
Hallett (2007)
10.1212/WNL.48.5.1398
Depression of motor cortex excitability by low‐frequency transcranial magnetic stimulation
R. Chen (1997)
10.1016/j.cub.2007.11.045
Somatic and Motor Components of Action Simulation
A. Avenanti (2007)
10.1097/WNP.0b013e31802fa393
Three-Dimensional Distribution of the Electric Field Induced in the Brain by Transcranial Magnetic Stimulation Using Figure-8 and Deep H-Coils
Y. Roth (2007)
10.1016/j.neuron.2010.03.035
Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning
B. Fritsch (2010)
10.1016/j.cortex.2012.11.002
Effects of transcranial direct current stimulation (tDCS) on executive functions: Influence of COMT Val/Met polymorphism
C. Plewnia (2013)
10.1016/j.brs.2008.07.002
Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation
C. Miniussi (2008)
10.1523/JNEUROSCI.1513-11.2011
Noninvasive Associative Plasticity Induction in a Corticocortical Pathway of the Human Brain
Ethan R. Buch (2011)
10.1093/BRAIN/AWH369
Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke.
F. Hummel (2005)
10.1016/j.brs.2012.02.005
Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs
Z. Deng (2013)
10.1177/027836498700600405
A Perturbation Approach to Robot Calibration
H. Kirchner (1987)
10.1111/j.1469-7793.2000.t01-1-00633.x
Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
M. Nitsche (2000)
10.1113/jphysiol.2010.196998
Boosting brain excitability by transcranial high frequency stimulation in the ripple range
V. Moliadze (2010)
10.1177/1073858410386614
Physiological Basis of Transcranial Direct Current Stimulation
C. Stagg (2011)
10.1093/brain/awp154
Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation.
R. Sparing (2009)
10.1007/s00221-008-1601-8
Mapping causal interregional influences with concurrent TMS–fMRI
S. Bestmann (2008)
10.1038/npp.2011.100
D2 Receptor Block Abolishes Theta Burst Stimulation-Induced Neuroplasticity in the Human Motor Cortex
K. Monte-Silva (2011)
10.1162/jocn_a_00338
Muscle and Timing-specific Functional Connectivity between the Dorsolateral Prefrontal Cortex and the Primary Motor Cortex
A. Hasan (2013)
10.1038/nn1203
Fast and slow parietal pathways mediate spatial attention
C. Chambers (2004)
10.1016/j.neuropsychologia.2010.06.002
Electrified minds: Transcranial direct current stimulation (tDCS) and Galvanic Vestibular Stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—A review of current data and future implications
K. Utz (2010)
10.1038/nrn3214
The economy of brain network organization
E. Bullmore (2012)
10.1113/jphysiol.2012.232975
The pharmacology of neuroplasticity induced by non‐invasive brain stimulation: building models for the clinical use of CNS active drugs
M. Nitsche (2012)
10.1113/jphysiol.2007.144824
Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control
J. Reis (2008)
10.1523/JNEUROSCI.4401-12.2013
Causal Frequency-Specific Contributions of Frontal Spatiotemporal Patterns Induced by Non-Invasive Neurostimulation to Human Visual Performance
L. Chanes (2013)
10.1113/jphysiol.2010.198077
Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory
N. Censor (2011)
10.1016/j.cortex.2008.10.002
Biophysical foundations underlying TMS: Setting the stage for an effective use of neurostimulation in the cognitive neurosciences
T. Wagner (2009)
10.1016/j.cub.2010.10.007
Modulating Neuronal Activity Produces Specific and Long-Lasting Changes in Numerical Competence
R. Cohen Kadosh (2010)
10.1523/JNEUROSCI.13-07-02910.1993
Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus
S. Dudek (1993)
10.1113/jphysiol.2003.049916
Pharmacological Modulation of Cortical Excitability Shifts Induced by Transcranial Direct Current Stimulation in Humans
M. Nitsche (2003)
10.1016/j.cub.2011.05.049
Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures
G. Thut (2011)
10.1093/BRAIN/123.3.572
Induction of plasticity in the human motor cortex by paired associative stimulation.
K. Stefan (2000)
10.1016/j.brs.2012.04.003
Commentary on: Deng et al., Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs
Y. Roth (2013)
10.1016/j.cub.2012.05.021
The Importance of Timing in Segregated Theta Phase-Coupling for Cognitive Performance
R. Polanía (2012)
10.1152/JN.01312.2006
Shaping the effects of transcranial direct current stimulation of the human motor cortex.
M. Nitsche (2007)
10.1523/JNEUROSCI.1161-11.2011
The Phase of Ongoing Oscillations Mediates the Causal Relation between Brain Excitation and Visual Perception
L. Dugué (2011)
10.1016/J.CRHY.2013.02.002
Some basic principles of a “LISA”
Jean-Yves Vinet (2013)
10.1038/35086012
Correlated neuronal activity and the flow of neural information
E. Salinas (2001)
10.1523/JNEUROSCI.0598-07.2007
Focal Stimulation of the Posterior Parietal Cortex Increases the Excitability of the Ipsilateral Motor Cortex
G. Koch (2007)
10.1016/j.neuron.2012.10.038
Canonical Microcircuits for Predictive Coding
A. Bastos (2012)
10.1016/J.CLINPH.2007.01.021
The after-effect of human theta burst stimulation is NMDA receptor dependent
Y. Huang (2007)
10.1016/j.brs.2009.03.005
Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad
A. Datta (2009)
10.1523/JNEUROSCI.4432-08.2009
Polarity-Sensitive Modulation of Cortical Neurotransmitters by Transcranial Stimulation
C. Stagg (2009)
10.1177/1550059412444975
Effects of Transcranial Electrical Stimulation on Cognition
M. Kuo (2012)
10.1016/j.neuron.2005.11.012
Origin and Classification of Neocortical Interneurons
R. Yuste (2005)
10.1113/jphysiol.2002.023317
Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation
K. Stefan (2002)
10.1113/jphysiol.2010.190181
Dosage‐dependent non‐linear effect of l‐dopa on human motor cortex plasticity
K. Monte-Silva (2010)
10.1038/nature712
Early consolidation in human primary motor cortex
W. Muellbacher (2002)
10.1002/hbm.21104
Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation
R. Polanía (2011)
10.1016/j.neulet.2004.05.113
Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans
Y. Kim (2004)
10.1038/38278
Functional relevance of cross-modal plasticity in blind humans
L. Cohen (1997)
10.1113/jphysiol.2003.059808
Exploring the connectivity between the cerebellum and motor cortex in humans
Z. Daskalakis (2004)
10.1016/j.cub.2011.01.035
Rhythmic TMS over Parietal Cortex Links Distinct Brain Frequencies to Global versus Local Visual Processing
V. Romei (2011)
10.1038/381706A0
Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus
A. Figurov (1996)
10.1016/j.clinph.2006.11.005
A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS)
S. Rossi (2007)
10.1152/JN.00900.2002
A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex.
A. Wolters (2003)
10.1111/j.1460-9568.2012.08035.x
Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging
Mouhsin M. Shafi (2012)
10.1016/j.cub.2010.07.047
Modification of Existing Human Motor Memories Is Enabled by Primary Cortical Processing during Memory Reactivation
N. Censor (2010)
10.1093/BRAIN/AWF238
Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.
D. Liebetanz (2002)
10.1523/JNEUROSCI.2002-11.2011
Random Noise Stimulation Improves Neuroplasticity in Perceptual Learning
A. Fertonani (2011)
10.1016/S0140-6736(85)92413-4
NON-INVASIVE MAGNETIC STIMULATION OF HUMAN MOTOR CORTEX
A. T. Barker (1985)
potential implications for motor learning
Fritsch (2010)
10.1016/j.neubiorev.2010.06.005
The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues
Marco Sandrini (2011)
10.1038/nn0901-948
Prefontal cortex in long-term memory: an “interference” approach using magnetic stimulation
S. Rossi (2001)



This paper is referenced by
10.1016/B978-3-437-23076-9.00016-4
Neurorehabilitation bei Kindern
Kristina Müller (2014)
10.1016/j.brs.2014.01.041
A Neurostimulation-based Advanced Training System for Human Performance Augmentation
Matthew Phillips (2014)
10.1016/B978-0-12-404704-4.00009-0
Effects of brain stimulation on declarative and procedural memories.
Marco Sandrini (2014)
Stimulation strategies for neurons and fibres Connecting biological and artificial neural networks
Stefano Buccelli (2016)
10.1155/2017/9898439
Electromagnetic Fields for the Regulation of Neural Stem Cells
M. Cui (2017)
10.1038/s41598-019-55157-z
Transcranial direct current stimulation (tDCS) over vmPFC modulates interactions between reward and emotion in delay discounting
A. Manuel (2019)
10.1101/459883
Increased Blood Flow and Oxidative Metabolism in the Human Brain by Transcranial Laser Stimulation
G. Dmochowski (2018)
10.3390/brainsci10050257
Theory of Mind Performance Predicts tDCS-Mediated Effects on the Medial Prefrontal Cortex: A Pilot Study to Investigate the Role of Sex and Age
Maria Cotelli (2020)
10.3389/fnins.2017.00401
A Fast EEG Forecasting Algorithm for Phase-Locked Transcranial Electrical Stimulation of the Human Brain
F. Mansouri (2017)
10.1177/0271678X19851020
Poster Viewing Sessions PB01-B01 to PB03-V09
T. Imai (2019)
The role of the prefrontal cortex in the controlof dual-task gait
J. Wrightson (2016)
10.1002/bjs5.43
Effects of transcranial direct‐current stimulation on laparoscopic surgical skill acquisition
P. Ciechanski (2018)
Traiter les troubles psychiatriques à l'aide de la stimulation transcrânienne par courant continu : approches comportementale et neurobiologique chez la souris
S. Pedron (2016)
10.1038/s41467-019-10638-7
Neural effects of transcranial magnetic stimulation at the single-cell level
Maria C. Romero (2019)
10.1038/s41598-017-13572-0
Monitoring cerebral hemodynamic change during transcranial ultrasound stimulation using optical intrinsic signal imaging
Evgenii Kim (2017)
10.3389/fnins.2016.00062
Differential Modulation of Excitatory and Inhibitory Neurons during Periodic Stimulation
Mufti Mahmud (2016)
10.1016/j.clinph.2015.01.030
Static magnetic field can transiently alter the human intracortical inhibitory system
I. Nojima (2015)
10.1007/978-3-319-95948-1_17
Transcranial Direct Current Stimulation in Stroke Rehabilitation: Present and Future
O. Awosika (2019)
Further Update on the Management of Obesity with Emphasis on Genetic Perspective
Gautam Allahbadia (2017)
10.1007/978-3-030-16613-7_5
Practical Review of Robotics in the Treatment of Chronic Impairment After Acquired Brain Injury
Johanna L. Chang (2019)
10.1016/j.bandl.2020.104840
Noninvasive neurostimulation of left ventral motor cortex enhances sensorimotor adaptation in speech production
Terri L Scott (2020)
Neural Correlates of Delusions in Patients with Alzheimerâ s Disease
W. Qian (2017)
Lateralization in emotional speech perception following transcranial direct current stimulation
Alex Francois-Nienaber (2015)
10.1016/j.nlm.2019.107037
Transcranial direct current stimulation applied after encoding facilitates episodic memory consolidation in older adults
M. Sandrini (2019)
10.1177/0300060520927881
Efficacy of functional magnetic stimulation in improving upper extremity function after stroke: a randomized, single-blind, controlled study
Xiao-wei Chen (2020)
10.3389/fneur.2019.01350
Editorial: Innovative Technologies and Clinical Applications for Invasive and Non-invasive Neuromodulation: From the Workbench to the Bedside
M. Bologna (2019)
10.1080/13554794.2017.1361451
Enhanced cognition and emotional recognition, and reduced obsessive compulsive symptoms in two adults with high-functioning autism as a result of deep Transcranial Magnetic Stimulation (dTMS): a case report
K. Avirame (2017)
10.1016/j.clinph.2019.02.020
Cerebellar inhibition in hepatic encephalopathy
S. S. Hassan (2019)
Stimulation magnétique transcrânienne robotisée : de l’automatisation des protocoles à de nouvelles approches en neuroimagerie fonctionnelle
S. Harquel (2017)
Robotized Transcranial Magnetic Stimulation : from automatized protocols towards new approaches in functional neuroimaging
S. Harquel (2017)
10.1007/978-3-319-33967-2_11
Target Engagement with Transcranial Current Stimulation
F. Fröhlich (2016)
10.1093/scan/nsaa011
Does non-invasive brain stimulation modulate emotional stress reactivity?
F. Smits (2020)
See more
Semantic Scholar Logo Some data provided by SemanticScholar