Online citations, reference lists, and bibliographies.

Antimicrobial Activity Of Metals: Mechanisms, Molecular Targets And Applications

Joseph A. Lemire, J. Harrison, R. Turner
Published 2013 · Medicine, Biology
Cite This
Download PDF
Analyze on Scholarcy
Share
Metals have been used as antimicrobial agents since antiquity, but throughout most of history their modes of action have remained unclear. Recent studies indicate that different metals cause discrete and distinct types of injuries to microbial cells as a result of oxidative stress, protein dysfunction or membrane damage. Here, we describe the chemical and toxicological principles that underlie the antimicrobial activity of metals and discuss the preferences of metal atoms for specific microbial targets. Interdisciplinary research is advancing not only our understanding of metal toxicity but also the design of metal-based compounds for use as antimicrobial agents and alternatives to antibiotics.
This paper references
10.1073/pnas.1110137108
Bacterial outer membrane channel for divalent metal ion acquisition
Thomas H Hohle (2011)
10.1089/ars.2010.3682
Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis.
Melinda Jo Faulkner (2011)
10.1001/jama.300.7.805
Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial.
M. Kollef (2008)
10.1017/S0269915X04001090
Alexis Millardet: France's forgotten mycologist
Peter G. Ayres (2004)
10.1111/j.1462-2920.2011.02677.x
Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria.
Sarah L. Warnes (2012)
10.1111/j.1462-2920.2004.00656.x
Biofilm susceptibility to metal toxicity.
J. Harrison (2004)
10.1111/j.1462-2920.2011.02556.x
New roles for bacterial siderophores in metal transport and tolerance.
I. Schalk (2011)
10.1021/pr0504079
Proteomic analysis of the mode of antibacterial action of silver nanoparticles.
Chun-Nam Lok (2006)
10.1128/AEM.71.11.7589-7593.2005
Bactericidal Actions of a Silver Ion Solution on Escherichia coli, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis
M. Yamanaka (2005)
10.1016/0165-1161(75)90088-6
Mutagenic activities of metal compounds in bacteria.
H. Nishioka (1975)
10.1021/es1034188
Surface charge-dependent toxicity of silver nanoparticles.
Amro M El Badawy (2011)
Nanoparticles in biotechnology, drug development and drug
J. Highsmith (2012)
10.1128/AAC.00203-08
Copper and Quaternary Ammonium Cations Exert Synergistic Bactericidal and Antibiofilm Activity against Pseudomonas aeruginosa
J. Harrison (2008)
10.1093/emboj/cdg215
Ferritins, iron uptake and storage from the bacterioferritin viewpoint.
M. A. Carrondo (2003)
10.1093/emboj/17.19.5543
Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins.
E. Stewart (1998)
10.1039/c2dt31360j
Remarkable in vitro bactericidal activity of bismuth(III) sulfonates against Helicobacter pylori.
Philip C Andrews (2012)
10.1128/JB.01357-06
Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli.
L. Macomber (2007)
10.1128/JB.187.14.4853-4864.2005
Global analysis of cellular factors and responses involved in Pseudomonas aeruginosa resistance to arsenite.
K. Parvatiyar (2005)
10.1128/AEM.02766-10
Metallic Copper as an Antimicrobial Surface
Gregor Grass (2010)
10.1073/pnas.1203051109
Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds
Kevin Barnese (2012)
Millardet: France’s forgotten mycologist
Ayres (2004)
10.1016/S0065-2911(07)53001-8
The bacterial response to the chalcogen metalloids Se and Te.
D. Zannoni (2007)
10.1128/jb.177.9.2305-2314.1995
Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase.
D. Touati (1995)
10.1021/nn2020248
Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts.
C. Gunawan (2011)
10.1128/AEM.07068-11
Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli
Robert Hong (2012)
Materia medica , or pharmacology , and general therapeutics
Pereira (1836)
10.1128/MMBR.64.2.354-411.2000
A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters
M. Saier (2000)
10.1128/aem.63.8.2971-2976.1997
Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation.
N. G. Howlett (1997)
10.1146/annurev.micro.57.030502.090938
Pathways of oxidative damage.
J. Imlay (2003)
10.1371/journal.pone.0000211
Bacterial Toxicity of Potassium Tellurite: Unveiling an Ancient Enigma
J. Pérez (2007)
10.1038/nrmicro2057
How do bacterial cells ensure that metalloproteins get the correct metal?
Kevin J. Waldron (2009)
10.1002/mbo3.26
Tellurite enters Escherichia coli mainly through the PitA phosphate transporter
Alex O. Elías (2012)
10.1016/j.jhazmat.2012.09.056
Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques.
S. Bandyopadhyay (2012)
10.1539/JOH.L9080
Genotoxicity studies of heavy metals: lead, bismuth, indium, silver and antimony.
Keiko Asakura (2009)
10.1007/s00253-009-2159-5
Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli
Wen-ru Li (2009)
10.1086/502251
Experiences of the first 16 hospitals using copper-silver ionization for Legionella control: implications for the evaluation of other disinfection modalities.
J. Stout (2003)
10.2174/0929867053764635
Metals, toxicity and oxidative stress.
M. Valko (2005)
10.1016/S0168-6445(03)00046-9
Bacterial mercury resistance from atoms to ecosystems.
T. Barkay (2003)
10.1021/es101072s
Antibacterial activity of nanosilver ions and particles.
Georgios A. Sotiriou (2010)
10.1107/S0108767313099583
The molecular basis of phosphate discrimination in arsenate-rich environments
Mikael Elias (2013)
10.1007/BF01688386
Mutagenicity of heavy metals
P. K. Wong (1988)
10.1099/mic.0.037143-0
Metals, minerals and microbes: geomicrobiology and bioremediation.
Geoffrey Michael Gadd (2010)
10.1093/jac/dks129
Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action.
Ezra Linley (2012)
10.1128/aem.65.11.4746-4752.1999
Cloning, Expression, and Characterization of Cadmium and Manganese Uptake Genes from Lactobacillus plantarum
Zhiqi Hao (1999)
10.1128/JB.00271-08
Glutathione and transition-metal homeostasis in Escherichia coli.
Kerstin Helbig (2008)
10.1099/mic.0.27945-0
Oxidative protein damage causes chromium toxicity in yeast.
Edward R Sumner (2005)
10.1038/nchembio.1020
The siderophore yersiniabactin binds copper to protect pathogens during infection
Kaveri S. Chaturvedi (2012)
10.1134/S0006297911020040
Cys377 residue in NqrF subunit confers Ag+ sensitivity of Na+-translocating NADH:quinone oxidoreductase from Vibrio harveyi
M. Fadeeva (2011)
10.1128/AEM.02001-07
Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli
W. K. Jung (2008)
10.1007/s10295-006-0139-7
Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds
S. Silver (2006)
10.1128/jb.179.10.3365-3367.1997
Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli.
O. Sanders (1997)
10.1128/JB.01063-08
Sequence and analysis of a plasmid-encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter.
Mathieu Schué (2009)
10.1016/j.cis.2008.09.002
Silver nanoparticles: green synthesis and their antimicrobial activities.
Virender K. Sharma (2009)
10.1111/j.1365-2958.2009.06699.x
Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli.
Adil Anjem (2009)
10.1016/j.watres.2008.12.002
Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity.
Hee-Jin Park (2009)
10.1016/S0168-6445(03)00048-2
Efflux-mediated heavy metal resistance in prokaryotes.
D. Nies (2003)
10.1128/aem.02218-06
Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli
S. Pal (2007)
10.1038/nrmicro1774
Multimetal resistance and tolerance in microbial biofilms
J. Harrison (2007)
10.1093/toxsci/kfn193
Chromate causes sulfur starvation in yeast.
Yannick Pereira (2008)
10.1126/science.1060331
Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis
C. E. Outten (2001)
10.1111/j.1432-1033.1981.tb06357.x
Citrate-dependent iron transport system in Escherichia coli K-12.
S. Hussein (1981)
10.1002/chin.197441025
Hard and soft acids and bases
R. T. Myers (1974)
10.1111/j.1462-2920.2011.02674.x
The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa.
Mélissa Hannauer (2012)
10.1097/00000441-185201000-00004
On the Treatment of Vesico-Vaginal Fistula
James Marion Sims
10.1186/1477-3155-10-19
Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin
Yangzhong Zhou (2012)
10.1146/annurev.bi.62.070193.004053
Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions.
E. Stadtman (1993)
10.1016/S0923-2508(01)01273-6
The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity.
C. Geslin (2001)
10.1159/000473709
The treatment of vesicovaginal fistulae.
H. Woo (1996)
10.1111/j.1462-2920.2010.02200.x
Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity.
Joseph Lemire (2010)
10.1128/AEM.01599-10
Bacterial Killing by Dry Metallic Copper Surfaces
Christophe Espírito Santo (2010)
10.1038/nchembio.1179
Gold biomineralization by a metallophore from a gold-associated microbe.
Chad W. Johnston (2013)
10.1021/nl301934w
Negligible particle-specific antibacterial activity of silver nanoparticles.
Zong-ming Xiu (2012)
10.1001/jama.1920.02620460023008
THE TREATMENT OF GONORRHEA OF THE MALE URETHRA
Edward Lawrence Keyes (1920)
10.1016/j.chemosphere.2008.09.079
Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp.
C. Dimkpa (2008)
10.1016/0891-5849(90)90131-2
Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury.
D. Janero (1990)
10.1038/nature08300
Metalloproteins and metal sensing
Kevin J. Waldron (2009)
10.1016/j.biotechadv.2008.09.002
Silver nanoparticles as a new generation of antimicrobials.
Mahendra K. Rai (2009)
10.1128/AEM.01704-10
Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces
Davide Quaranta (2010)
10.1099/mic.0.026260-0
Tellurite-mediated disabling of [4Fe-4S] clusters of Escherichia coli dehydratases.
Iván L. Calderón (2009)
10.1378/chest.12-1639
Cystic fibrosis therapeutics: the road ahead.
Lucas R Hoffman (2013)
10.1089/sur.2008.9941
History of the medical use of silver.
J. Alexander (2009)
10.1016/j.cbi.2005.12.009
Free radicals, metals and antioxidants in oxidative stress-induced cancer.
M. Valko (2006)
10.1021/es60164a002
Metal speciation. Effects on aquatic toxicity.
H. Allen (1980)
10.1046/j.1472-765X.1997.00219.x
Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions.
S. Liau (1997)
10.1053/ic.1998.v26.a93527
Wound management in an era of increasing bacterial antibiotic resistance: a role for topical silver treatment.
J. B. Wright (1998)
10.1172/JCI30783
The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity.
Yukihiro Kaneko (2007)
Chemistry on Metal Binding Effect of O-Side-Chain-Lipopolysaccharide
Sean Langley (1999)
10.1074/jbc.M110.180620
Selective Electrodiffusion of Zinc Ions in a Zrt-, Irt-like Protein, ZIPB*♦
Wei Lin (2010)
10.1038/nrmicro1839
Membrane lipid homeostasis in bacteria
Y. Zhang (2008)
10.1046/j.1365-2958.1999.01175.x
Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria.
I. Stojiljković (1999)
10.1007/s00253-010-2640-1
Survival of bacteria on metallic copper surfaces in a hospital trial
André Mikolay (2010)
10.1073/pnas.0812808106
The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity
Lee Macomber (2009)
10.1111/J.1462-2920.2007.01448.X
Pseudomonas fluorescens' view of the periodic table.
M. Workentine (2008)
10.1073/pnas.0808608105
The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent
E. Banin (2008)
10.1074/jbc.M400037200
As(III) and Sb(III) Uptake by GlpF and Efflux by ArsB in Escherichia coli*
Yu-ling Meng (2004)
The bactericidal effect of silver nanoparticles
K. Piksová (2010)
10.1128/JB.186.18.6220-6229.2004
The hFbpABC transporter from Haemophilus influenzae functions as a binding-protein-dependent ABC transporter with high specificity and affinity for ferric iron.
D. Anderson (2004)
10.1002/CHIN.201007265
Application of Metal Coordination Chemistry to Explore and Manipulate Cell Biology
Kathryn L Haas (2010)
10.1038/NGEO412
High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens
J K Schaefer (2009)
10.1111/j.1365-2958.2011.07891.x
Fructose-1,6-bisphosphate aldolase (class II) is the primary site of nickel toxicity in Escherichia coli.
Lee Macomber (2011)
10.1126/science.ns-13.312.62
THE VALUE OF MERCURIC CHLORIDE AS A DISINFECTANT.
10.1016/j.jcis.2004.02.012
Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria.
I. Sondi (2004)
10.1074/jbc.274.49.34832
Role of Iron and Superoxide for Generation of Hydroxyl Radical, Oxidative DNA Lesions, and Mutagenesis in Escherichia coli *
T. Nunoshiba (1999)
10.1126/science.1085049
Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors
L. Finney (2003)
10.1146/annurev.pa.33.040193.002553
Molecular and ionic mimicry of toxic metals.
T. Clarkson (1993)
10.1002/CHIN.201006264
Coordination Chemistry of Bacterial Metal Transport and Sensing
Zhen Ma (2010)
10.1128/AAC.00655-09
Gallium Disrupts Iron Uptake by Intracellular and Extracellular Francisella Strains and Exhibits Therapeutic Efficacy in a Murine Pulmonary Infection Model
Oyebode Olakanmi (2009)
10.1074/jbc.M111.330365
Mononuclear Iron Enzymes Are Primary Targets of Hydrogen Peroxide Stress*
Adil Anjem (2012)
10.1016/S0140-6736(01)09037-7
TELLURIUM IN THE TREATMENT OF SYPHILIS.
Andrew D. Frazer
10.1016/j.actbio.2007.11.006
Strain specificity in antimicrobial activity of silver and copper nanoparticles.
J. Ruparelia (2008)
10.1111/j.1462-2920.2008.01838.x
New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway.
A. Braud (2009)
10.1128/JB.187.5.1604-1611.2005
The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum.
G. Grass (2005)
10.1074/jbc.M411979200
Aluminum Triggers Decreased Aconitase Activity via Fe-S Cluster Disruption and the Overexpression of Isocitrate Dehydrogenase and Isocitrate Lyase
Jeffrey Middaugh (2005)
10.1128/JB.00272-08
Cadmium toxicity in glutathione mutants of Escherichia coli.
Kerstin Helbig (2008)
10.1111/j.1574-6968.2000.tb09019.x
Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli.
S. J. Beard (2000)
10.1128/JB.00837-06
Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa.
G. Teitzel (2006)
10.1128/AAC.01830-09
Silver Coordination Polymers for Prevention of Implant Infection: Thiol Interaction, Impact on Respiratory Chain Enzymes, and Hydroxyl Radical Induction
Oliver Gordon (2010)
10.1016/S0140-6736(11)60020-2
Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole versus clarithromycin-based triple therapy: a randomised, open-label, non-inferiority, phase 3 trial
Peter Malfertheiner (2011)
10.1128/mBio.00489-12
Horizontal Transfer of Antibiotic Resistance Genes on Abiotic Touch Surfaces: Implications for Public Health
Sarah L. Warnes (2012)
10.1128/AEM.07368-11
Silver(I), Mercury(II), Cadmium(II), and Zinc(II) Target Exposed Enzymic Iron-Sulfur Clusters when They Toxify Escherichia coli
F. F. Xu (2012)
10.1016/J.APGEOCHEM.2008.02.001
Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: A review
G. Cornelis (2008)
10.1074/jbc.M307413200
The Saccharomyces cerevisiae High Affinity Phosphate Transporter Encoded by PHO84 Also Functions in Manganese Homeostasis*
L. T. Jensen (2003)
10.1126/science.1121569
Response to Comment by Volkov et al. on "Computational Improvements Reveal Great Bacterial Diversity and High Metal Toxicity in Soil"
Jason D. Gans (2006)
10.2175/106143096x127307
The importance of trace metal speciation to water quality criteria
H. Allen (1996)
10.1007/s00726-003-0011-2
Free radical-mediated oxidation of free amino acids and amino acid residues in proteins
E. Stadtman (2003)
10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus.
Q. Feng (2000)
10.1002/chin.200310226
Shape‐Controlled Synthesis of Gold and Silver Nanoparticles.
Y. Sun (2003)
10.1039/JR9530003192
637. The stability of transition-metal complexes
H. Irving (1953)
10.1099/00221287-128-10-2389
Antibacterial effect of the scandium and indium complexes of enterochelin on Escherichia coli.
Howard J. Rogers (1982)
10.1021/jp0448346
Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction.
D. Yu (2005)
10.1073/pnas.93.24.13635
Superoxide accelerates DNA damage by elevating free-iron levels.
K. Keyer (1996)
10.2174/2212796810903030272
Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections
Gadi Borkow (2009)
10.1016/0891-5849(94)00159-H
Oxidative mechanisms in the toxicity of metal ions.
S. Stohs (1995)
10.1126/science.2834821
Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro.
J. Imlay (1988)
10.1128/AAC.46.8.2668-2670.2002
Chemiosmotic Mechanism of Antimicrobial Activity of Ag+ in Vibrio cholerae
P. Dibrov (2002)
10.1074/jbc.M004611200
The Family of SMF Metal Ion Transporters in Yeast Cells*
A. Cohen (2000)
10.1016/j.ijfoodmicro.2005.04.021
The survival of Escherichia coli O157 on a range of metal surfaces.
S. Wilks (2005)
10.1021/la0202374
Metal oxide nanoparticles as bactericidal agents
P. Stoimenov (2002)
10.1016/S1473-3099(04)01136-3
Pushing Bordeaux mixture.
Bernard Dixon (2004)
10.1093/oxfordjournals.jbchem.a124776
Mechanism of chromium(VI) toxicity in Escherichia coli: is hydrogen peroxide essential in Cr(VI) toxicity?
Mitsuomi Itoh (1995)
10.1002/smll.201200772
Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress.
Guy Applerot (2012)
10.1007/BF01929523
Die Verhütung der Augenentzündung der Neugeborenen
Credé (2005)
10.1088/0953-8984/22/45/454106
Critical assessment of OmpF channel selectivity: merging information from different experimental protocols.
María-Lidón Lopez (2010)
10.1126/science.1085950
Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR
A. Changela (2003)
10.1046/j.1365-2958.2001.02485.x
The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae.
R. Wysocki (2001)
10.1093/nar/gkj001
TCDB: the Transporter Classification Database for membrane transport protein analyses and information
M. Saier (2006)
10.1111/j.1462-2920.2009.01973.x
Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance.
J. Harrison (2009)
10.1378/chest.09-0391
Association between a silver-coated endotracheal tube and reduced mortality in patients with ventilator-associated pneumonia.
Bekele Afessa (2010)
10.1016/0165-1161(76)90077-7
Use of a simplified fluctuation test to detect low levels of mutagens.
Michael H. L. Green (1976)
New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine–iron uptake
A. Braud (2009)
10.1038/ismej.2012.103
Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth
B. Luef (2013)
10.1046/j.1365-2958.2000.01774.x
Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter.
H. Makui (2000)
A COMPARATIVE STUDY OF SEVERAL TRANSITION METALS IN FENTON-LIKE REACTION SYSTEMS AT CIRCUM-NEUTRAL pH
M. Strlič (2003)
10.1002/chin.198413001
ABSOLUTE HARDNESS: COMPANION PARAMETER TO ABSOLUTE ELECTRONEGATIVITY
R. Parr (1984)
10.1139/m74-135
The effect of silver ions on the respiratory chain of Escherichia coli.
P. D. Bragg (1974)
10.1038/NGEO161
Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores
Jean-Philippe Bellenger (2008)
10.1007/s10534-011-9482-x
Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7
Hengyi Xu (2011)
[Treatment of vesicovaginal fistula].
Ricardo Ercole (1955)
10.1128/JB.00010-09
The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity.
A. Braud (2009)
10.1016/S1097-2765(02)00500-2
Sulfur sparing in the yeast proteome in response to sulfur demand.
M. Fauchon (2002)
10.1007/s002530051457
Microbial heavy-metal resistance
D. Nies (1999)
10.1016/S0038-0717(00)00164-4
Microbial δ-aminolevulinate dehydratase as a biosensor of lead bioavailability in contaminated environments
O. Ogunseitan (2000)
Purification and characterization of Ag,Zn-superoxide dismutase from Saccharomyces cerevisiae exposed to silver.
M. Ciriolo (1994)
10.1002/cber.191204501110
Über das salzsaure 3.3′-Diamino-4.4′-dioxy-arsenobenzol und seine nächsten Verwandten
P. Ehrlich (1912)
10.1016/S0022-5347(01)61753-1
The Efficacy of Silver Alloy-Coated Urinary Catheters in Preventing Urinary Tract Infection: A Meta-Analysis
S. Saint (1999)
10.1128/AEM.02765-09
Acetate Permease (ActP) Is Responsible for Tellurite (TeO32−) Uptake and Resistance in Cells of the Facultative Phototroph Rhodobacter capsulatus
R. Borghese (2009)
10.1128/jb.144.1.366-374.1980
Effect of arsenate on inorganic phosphate transport in Escherichia coli.
G. Willsky (1980)
10.1128/AEM.00597-11
Mechanism of Copper Surface Toxicity in Vancomycin-Resistant Enterococci following Wet or Dry Surface Contact
Sarah L. Warnes (2011)
10.1289/ehp.8140233
The role of metals in carcinogenesis: biochemistry and metabolism.
K. Jennette (1981)
10.1128/aem.55.12.3143-3149.1989
Bacterial sorption of heavy metals.
M. Mullen (1989)
10.1371/journal.pgen.1000053
Global Transcriptome and Deletome Profiles of Yeast Exposed to Transition Metals
Y. H. Jin (2008)
10.1146/annurev.micro.50.1.753
Bacterial heavy metal resistance: new surprises.
S. Silver (1996)
10.1038/nsb1297-1025
X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase
P. Erskine (1997)
10.1128/AEM.70.11.6800-6808.2004
Ultrastructural Alterations of Erwinia carotovora subsp. atroseptica Caused by Treatment with Aluminum Chloride and Sodium Metabisulfite
E. Yaganza (2004)
10.1093/bioinformatics/bth095
A hint to search for metalloproteins in gene banks
C. Andreini (2004)



This paper is referenced by
10.1016/j.jinorgbio.2017.02.015
[Au(pyb-H)(mnt)]: A novel gold(III) 1,2-dithiolene cyclometalated complex with antimicrobial activity (pyb-H=C-deprotonated 2-benzylpyridine; mnt=1,2-dicyanoethene-1,2-dithiolate).
A. Pintus (2017)
10.1084/jem.20181776
A major role for ferroptosis in Mycobacterium tuberculosis–induced cell death and tissue necrosis
Eduardo P Amaral (2019)
10.3389/fmicb.2015.00584
Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms
Emanuele Zonaro (2015)
10.1016/J.CEJ.2016.03.020
Disinfection and removal performance for Escherichia coli and heavy metals by silver-modified zeolite in a fixed bed column
Lulu Akhigbe (2016)
10.1201/9781315370569-15
Guidelines for Nanosilver-Based Antibacterial Devices
Loris Rizzello (2017)
10.3390/molecules25112682
Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides
Francis J. Osonga (2020)
10.1016/J.SURFCOAT.2017.08.005
On the reflectivity and antibacterial/antifungal responses of Al-Ni-Y optical thin film metallic glass composites
C. M. Chang (2017)
10.1007/s10534-017-0064-4
Life and death of Trypanosoma cruzi in presence of metals
Laís Pessanha de Carvalho (2017)
10.1016/J.SNB.2017.07.043
Sesame-derived ions co-doped fluorescent carbon nanoparticles for bio-imaging, sensing and patterning applications
Caiyan Yu (2017)
10.1038/s41598-017-15537-9
Designing Ecofriendly Bionanocomposite Assembly with Improved Antimicrobial and Potent on-site Zika Virus Vector Larvicidal Activities with its Mode of Action
Pramod C. Mane (2017)
10.1002/adhm.201701392
Metal Nanoparticles for Diagnosis and Therapy of Bacterial Infection.
Peiyan Yuan (2018)
Vaidya, M and McBain, A and Banks, C and Vagg-Whitehead, KA (2018)Sin- gle and combined antimicrobial efficacies for nine metal ion solutions against Klebsiella pneumoniae, Acinetobacter baumannii and Enterococcus faecium
Andrew J. McBainb (2019)
Metagenomic profiling of microbial metal interaction in Red Sea deep-anoxic brine pools
Mina A. Hanna (2015)
Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future?
Mariya 
Lobanovska (2017)
10.1016/J.SNB.2017.12.056
A portable fluorescence resonance energy transfer biosensor for rapid detection of silver ions
Yi Ju Chen (2018)
10.3390/polym12020362
Polyurethane-Based Composites: Effects of Antibacterial Fillers on the Physical-Mechanical Behavior of Thermoplastic Polyurethanes
Maurizio Villani (2020)
10.1101/457358
Novel Mechanism for Surface Layer Shedding and Regenerating in Bacteria Exposed to Metal-Contaminated Conditions
Archjana Chandramohan (2018)
10.1101/780981
Zinc can counteract selection for ciprofloxacin resistance
Michiel Vos (2019)
Development of antibacterial hemp hurd/poly(lactic acid) biocomposite for food packaging
Belas Ahmed Khan (2017)
10.1007/978-3-030-35955-3_8
Application of Nanotechnology for Integrated Plant Disease Management
Imran ul Haq (2020)
10.1007/s10123-019-00101-4
Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis.
A. Khan (2019)
10.1128/CMR.00125-18
The Use of Copper as an Antimicrobial Agent in Health Care, Including Obstetrics and Gynecology
Linda P Arendsen (2019)
10.1039/c9sc01480b
Combination of gallium(iii) with acetate for combating antibiotic resistant Pseudomonas aeruginosa† †Electronic supplementary information (ESI) available: Experimental procedures, supplementary figures and omics data. See DOI: 10.1039/c9sc01480b
Yuchuan Wang (2019)
10.1016/j.envres.2020.109504
Can Palythoa cf. variabilis biochemical patterns be used to predict coral reef conservation state in Todos Os Santos Bay?
Priscilla Campos (2020)
10.1016/j.msec.2018.04.093
Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review.
Vikram Pareek (2018)
10.1007/s11696-018-0400-3
Europium and terbium Schiff base peptide complexes as potential antimicrobial agents against Salmonella typhimurium and Pseudomonas aeruginosa
Jindrich Kynicky (2018)
10.1016/j.copbio.2013.11.008
Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates.
Patricia A. Holden (2014)
10.1179/1753555714Y.0000000189
Polydopamine assisted immobilisation of copper(II) on titanium for antibacterial applications
Tianrui He (2014)
10.1016/J.CLAY.2015.01.029
Development of transition metal oxide–kaolin composite pigments for potential application in paint systems
Swagata Roy (2015)
10.1134/S1995078015050171
Antimicrobial properties of polypropylene yarn modified by metal nanoparticles stabilized by polyethylene
Natalia Prorokova (2015)
10.1016/j.jhazmat.2015.06.028
Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers.
Jennifer Quirós (2015)
10.1016/j.jtusci.2015.09.007
Antibacterial activity of Miswak (Salvadora persica L.) extracts on oral hygiene
Mohammad K. Abhary (2016)
See more
Semantic Scholar Logo Some data provided by SemanticScholar