Online citations, reference lists, and bibliographies.
← Back to Search

Electrochemical Processes And Mechanistic Aspects Of Field-effect Sensors For Biomolecules.

W. Huang, A. K. Diallo, Jennifer Dailey, K. Besar, H. Katz
Published 2015 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Electronic biosensing is a leading technology for determining concentrations of biomolecules. In some cases, the presence of an analyte molecule induces a measured change in current flow, while in other cases, a new potential difference is established. In the particular case of a field effect biosensor, the potential difference is monitored as a change in conductance elsewhere in the device, such as across a film of an underlying semiconductor. Often, the mechanisms that lead to these responses are not specifically determined. Because improved understanding of these mechanisms will lead to improved performance, it is important to highlight those studies where various mechanistic possibilities are investigated. This review explores a range of possible mechanistic contributions to field-effect biosensor signals. First, we define the field-effect biosensor and the chemical interactions that lead to the field effect, followed by a section on theoretical and mechanistic background. We then discuss materials used in field-effect biosensors and approaches to improving signals from field-effect biosensors. We specifically cover the biomolecule interactions that produce local electric fields, structures and processes at interfaces between bioanalyte solutions and electronic materials, semiconductors used in biochemical sensors, dielectric layers used in top-gated sensors, and mechanisms for converting the surface voltage change to higher signal/noise outputs in circuits.
This paper references
10.1002/smll.201302081
Functionalized MoS(2) nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution.
Lu Wang (2014)
10.1002/ANDP.18531650603
Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche
H. Helmholtz (1853)
10.1021/am5032693
Aptamer-functionalized hybrid carbon nanofiber FET-type electrode for a highly sensitive and selective platelet-derived growth factor biosensor.
Jaemoon Jun (2014)
10.1073/pnas.1200549109
Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors
M. D. Angione (2012)
10.1002/smll.200901551
A nanoelectronic enzyme-linked immunosorbent assay for detection of proteins in physiological solutions.
E. Stern (2010)
10.1016/S0925-4005(00)00573-6
Enzyme monolayer-functionalized field-effect transistors for biosensor applications
A. B. Kharitonov (2000)
10.1021/nn901365g
Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors.
Zhifeng Kuang (2010)
10.1016/J.SNB.2006.08.038
Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors
D. Macaya (2007)
10.1021/cr100380z
Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics.
C. Wang (2012)
10.1021/AC060830G
Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors.
K. Maehashi (2007)
10.1021/ar200006r
n-Channel semiconductor materials design for organic complementary circuits.
H. Usta (2011)
10.1016/J.BIOS.2004.11.012
Home blood glucose biosensors: a commercial perspective.
J. D. Newman (2005)
10.1002/adma.201300211
Printed, sub-2V ZnO electrolyte gated transistors and inverters on plastic.
K. Hong (2013)
10.1016/S0003-2670(00)80554-1
Possibilities and limitations of direct detection of protein charges by means of an immunological field-effect transistor
R. B. Schasfoort (1990)
10.1088/0957-4484/24/3/035501
Effects of buffer composition and dilution on nanowire field-effect biosensors.
Noémie Lloret (2013)
10.1038/nnano.2009.353
Label-free biomarker detection from whole blood
E. Stern (2010)
10.1002/adma.201000740
Functional organic field-effect transistors.
Y. Guo (2010)
10.1016/J.SNB.2014.04.079
Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate
X. You (2014)
10.1021/JA065923U
Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution.
Yuri L Bunimovich (2006)
10.1002/adma.201203587
Electrolyte-gated organic field-effect transistor sensors based on supported biotinylated phospholipid bilayer.
M. Magliulo (2013)
10.1021/nl301714x
Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose.
S. J. Park (2012)
10.1039/c2cs35089k
Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality.
R. Joshi (2012)
10.1063/1.3600063
High sensitivity AlGaN/GaN field effect transistor protein sensors operated in the subthreshold regime by a control gate electrode
Xuejin Wen (2011)
10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
Organic Field‐Effect Transistors
G. Horowitz (1998)
10.1002/(SICI)1521-4095(199808)10:12<923::AID-ADMA923>3.0.CO;2-W
The Concept of “Threshold Voltage” in Organic Field‐Effect Transistors
G. Horowitz (1998)
10.1007/s12010-013-0233-z
Carbon Nanotubes-Based Label-Free Affinity Sensors for Environmental Monitoring
T. Sarkar (2013)
10.1021/NL071792Z
Importance of the Debye screening length on nanowire field effect transistor sensors.
E. Stern (2007)
10.1016/j.bios.2013.01.051
pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors.
Il-Yung Sohn (2013)
10.1143/JJAP.43.L1137
Immobilization of Probe DNA on Ta2O5 Thin Film and Detection of Hybridized Helix DNA using IS-FET
T. Ohtake (2004)
10.1002/ADMA.200602043
Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors
B. L. Allen (2007)
10.1109/16.127470
Modeling H/sup +/-sensitive FETs with SPICE
M. Grattarola (1992)
10.1016/J.AB.2004.07.038
A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes.
M. L. Mena (2005)
10.1016/J.RBMRET.2007.11.007
Amperometric enzyme biosensors: Past, present and future
S. Dzyadevych (2008)
10.1063/1.4751354
Highly sensitive tactile sensors integrated with organic transistors
J. Kim (2012)
10.1557/JMR.2004.0266
Organic thin film transistors: From theory to real devices
G. Horowitz (2004)
10.1002/smll.201100211
Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors.
M. S. Makowski (2011)
10.1073/PNAS.0406159101
Electrical detection of single viruses.
Fernando Patolsky (2004)
10.1038/nnano.2010.275
Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor.
S. Sorgenfrei (2011)
10.1021/nn300819s
Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers.
Mitchell B. Lerner (2012)
10.3390/s121115036
Interfacial Structures and Properties of Organic Materials for Biosensors: An Overview
Y. Zhou (2012)
10.1021/AC0155409
Optimal environment for glucose oxidase in perfluorosulfonated ionomer membranes: improvement of first-generation biosensors.
A. A. Karyakin (2002)
10.1021/nl302434w
Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices.
R. Elnathan (2012)
10.1021/AC00202A007
Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications.
B. Gregg (1990)
10.1039/b909902f
Organic thin-film transistors.
H. Klauk (2010)
10.1039/c1nr10316d
Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors.
L. De Vico (2011)
10.1021/AC50061A035
Histidine ammonia-lyase enzyme electrode for determination of L-histidine
R. Walters (1980)
10.1039/C3SC52638K
Label-free brain injury biomarker detection based on highly sensitive large area organic thin film transistor with hybrid coupling layer
W. Huang (2014)
10.1016/0925-4005(91)80187-O
Future Applications of ISFETs
P. Bergveld (1991)
10.1002/adma.200904163
A water-gate organic field-effect transistor.
L. Kergoat (2010)
10.1126/science.1203052
Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays
M. Mccarthy (2011)
10.1021/cr068120y
ISFET and fiber optic sensor technologies: in vivo experience for critical care monitoring.
B. McKinley (2008)
10.1021/nn2035796
Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems.
Hsiao-Kang Chang (2011)
10.1002/ADMA.200501152
Device Physics of Solution‐Processed Organic Field‐Effect Transistors
H. Sirringhaus (2005)
10.1002/ADFM.201001530
Materials for Printable, Transparent, and Low‐Voltage Transistors
J. Sun (2011)
10.1016/J.SNB.2008.11.048
Fabrication and application of silicon nanowire transistor arrays for biomolecular detection
Xuan Thang Vu (2010)
10.1016/0003-2670(96)00185-7
Correlation between the electrical charge properties of polymeric membranes and the characteristics of ion field effect transistors or penicillinase based enzymatic field effect transistors
D. Gorchkov (1996)
10.1073/pnas.1315485111
On the origin of enhanced sensitivity in nanoscale FET-based biosensors
K. Shoorideh (2014)
10.1016/S0925-4005(03)00161-8
Portable urea biosensor based on the extended-gate field effect transistor
Jia-Chyi Chen (2003)
10.1002/adma.201403541
Detection beyond Debye's length with an electrolyte-gated organic field-effect transistor.
G. Palazzo (2015)
10.1021/AC50062A035
Field effect transistor sensitive to penicillin
Steve D. Caras (1980)
10.1002/ADFM.200305122
Extracting Parameters from the Current–Voltage Characteristics of Organic Field‐Effect Transistors
G. Horowitz (2004)
10.1016/j.bios.2011.05.019
Functionalized SnO₂ nanobelt field-effect transistor sensors for label-free detection of cardiac troponin.
Y. Cheng (2011)
10.1016/S0003-2670(99)00609-1
Towards the development of a fibre-optic nucleic acid biosensor, considerations for the quantitative transduction of hybridization of immobilized DNA
J. Watterson (1999)
10.1016/J.SNB.2014.11.085
High-performance field-effect transistor-type glucose biosensor based on nanohybrids of carboxylated polypyrrole nanotube wrapped graphene sheet transducer
J. W. Park (2015)
10.1016/S0001-8686(96)00307-7
A general model to describe the electrostatic potential at electrolyte oxide interfaces
R. V. Hal (1996)
10.1021/CM102419Z
π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications†
A. Facchetti (2011)
10.1021/JP963056H
DIRECT DETECTION OF THE HYBRIDIZATION OF SYNTHETIC HOMO-OLIGOMER DNA SEQUENCES BY FIELD EFFECT
É. Souteyrand (1997)
10.1021/JA027929Z
Label-free DNA hybridization probe based on a conducting polymer.
Liz A Thompson (2003)
10.1002/adma.201000790
In situ, label-free DNA detection using organic transistor sensors.
H. Khan (2010)
10.1002/adma.201400731
Ion-selective organic electrochemical transistors.
M. Sessolo (2014)
10.3390/s100505133
Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors
PingAn Hu (2010)
10.1143/JJAP.43.L1558
Ultrasensitive Detection of DNA Hybridization Using Carbon Nanotube Field-Effect Transistors
K. Maehashi (2004)
10.1016/j.bios.2014.09.020
Electrical signaling of enzyme-linked immunosorbent assays with an ion-sensitive field-effect transistor.
H. Jang (2015)
10.1021/JA062117E
Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers.
X. Yu (2006)
10.1021/ja107088m
In situ antibody detection and charge discrimination using aqueous stable pentacene transistor biosensors.
H. Khan (2011)
10.1002/cbic.201200364
A pH‐Based High‐Throughput Assay for Transketolase: Fingerprinting of Substrate Tolerance and Quantitative Kinetics
Dong Yi (2012)
10.1007/S00216-005-3400-4
Carbon nanotube transistors for biosensing applications.
G. Grüner (2005)
10.1109/TED.2012.2214221
Optimization of the Sensitivity of FET-Based Biosensors via Biasing and Surface Charge Engineering
K. Shoorideh (2012)
10.5757/ASCT.2014.23.2.61
Applications of Field-Effect Transistor (FET)-Type Biosensors
Jeho Park (2014)
10.1016/S0956-5663(99)00007-X
Application of enzyme field-effect transistors for determination of glucose concentrations in blood serum.
S. Dzyadevich (1999)
10.1021/NL034139U
Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors
K. Besteman (2003)
10.1016/J.NANTOD.2011.02.001
Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation
K. I. Chen (2011)
10.1021/bc800092w
Modularly assembled magnetite nanoparticles enhance in vivo targeting for magnetic resonance cancer imaging.
P. Wu (2008)
10.1093/HMG/DDL252
Cholinergic neuronal defect without cell loss in Huntington's disease.
R. Smith (2006)
10.1021/nl2042276
Thin film polycrystalline silicon nanowire biosensors.
M. A. Hakim (2012)
10.1021/nl203666a
Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor.
G. Kulkarni (2012)
10.1002/ADMA.200700665
Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules.
S. Kim (2007)
10.1039/c0nr00442a
Quantifying signal changes in nano-wire based biosensors.
L. De Vico (2011)
10.1021/CM049391X
Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors
C. Newman (2004)
10.1021/nn303795r
Understanding the electrolyte background for biochemical sensing with ion-sensitive field-effect transistors.
A. Tarasov (2012)
10.1016/j.aca.2012.08.035
Silicon nanowire biosensor and its applications in disease diagnostics: a review.
G. Zhang (2012)
10.1176/AJP.150.3.454
Choline acetyltransferase in schizophrenia.
C. Karson (1993)
10.1021/JA053761G
Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes.
C. Li (2005)
10.1002/ADFM.200901830
Dual-Gate Organic Field-Effect Transistors as Potentiometric Sensors in Aqueous Solution
Mark-Jan Spijkman (2010)
10.1016/J.ORGEL.2010.04.013
Organic RFID transponder chip with data rate compatible with electronic product coding
K. Myny (2010)
10.1021/acs.nanolett.5b00133
General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors.
N. Gao (2015)
10.1038/nbt1138
Multiplexed electrical detection of cancer markers with nanowire sensor arrays
G. Zheng (2005)
10.1002/adma.200904054
Stretchable, large-area organic electronics.
T. Sekitani (2010)
10.1016/S0379-6779(98)00313-0
Theory of the organic field-effect transistor
G. Horowitz (1999)
10.1021/ar2001233
Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.
A. Sokolov (2012)
10.1016/0925-4005(94)87056-X
ISFET responses on a stepwise change in electrolyte concentration at constant pH
J. Kerkhof (1994)
10.1039/B204444G
Recent advances in biologically sensitive field-effect transistors (BioFETs).
M. J. Schöning (2002)
10.1002/POLB.23054
Organic transistors in the new decade: Toward n-channel, printed, and stabilized devices
S. Kola (2012)
10.1021/JA9930824
Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy
R. Georgiadis (2000)
10.1103/REVMODPHYS.80.839
Transport phenomena in nanofluidics
Reto B. Schoch (2008)
10.1098/rsif.2007.1107
Engineering functional protein interfaces for immunologically modified field effect transistor (ImmunoFET) by molecular genetic means
E. Eteshola (2007)
10.1016/0003-2670(95)00592-7
Glucose-sensitive ion-sensitive field-effect transistor-based biosensor with additional positively charged membrane. Dynamic range extension and reduction of buffer concentration influence on the sensor response
Vjacheslav Volotovsky (1996)
10.1002/adma.201202996
Ultralow voltage, OTFT-based sensor for label-free DNA detection.
S. Lai (2013)
10.1002/adma.201103334
Organic thin-film transistors for chemical and biological sensing.
P. Lin (2012)
10.1039/c3cs60127g
Organic field-effect transistor sensors: a tutorial review.
L. Torsi (2013)
10.1039/c3cs60077g
Electrical biosensors and the label free detection of protein disease biomarkers.
X. Luo (2013)
10.1039/B916037J
Response diversity and dual response mechanism of organic field-effect transistors with dinitrotoluene vapor
Jia Huang (2010)
10.1021/nl901596m
Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption.
Yasuhide Ohno (2009)
10.3390/S80314000
Electrochemical Biosensors - Sensor Principles and Architectures
Dorothee Grieshaber (2008)
10.1016/0003-2670(94)00376-W
Application of enzyme-field effect transistor sensor arrays as detectors in a flow-injection analysis system for simultaneous monitoring of medium components. Part II. Monitoring of cultivation processes
T. Kullick (1995)
10.1007/s00216-011-5610-2
Microcantilevers and organic transistors: two promising classes of label-free biosensing devices which can be integrated in electronic circuits
S. Cotrone (2011)
10.1021/nl502366e
Direct, rapid, and label-free detection of enzyme-substrate interactions in physiological buffers using CMOS-compatible nanoribbon sensors.
Luye Mu (2014)
10.1002/ADFM.201101324
Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors.
Noah J. Tremblay (2011)
10.1002/adma.201201841
Biofunctional electrolyte-gated organic field-effect transistors.
Felix Buth (2012)
10.1021/nn5009148
MoS₂ field-effect transistor for next-generation label-free biosensors.
D. Sarkar (2014)
10.1021/nl5010724
Sensitivity enhancement of Si nanowire field effect transistor biosensors using single trap phenomena.
J. Li (2014)
10.1016/j.bios.2012.08.047
CRP detection from serum for chip-based point-of-care testing system.
C. Kim (2013)
10.1038/nature05498
Label-free immunodetection with CMOS-compatible semiconducting nanowires
E. Stern (2007)
10.1016/S0003-2670(00)84464-5
Determination of sucrose in the presence of glucose in a flow-injection system with imomobilized multi-enzyme reactors
B. Olsson (1986)
10.1016/S0925-4005(01)01049-8
ISFET glucose sensor system with fast recovery characteristics by employing electrolysis
Keun-Yong Park (2002)
10.1016/j.bios.2014.09.062
Quantitative analysis of immobilized penicillinase using enzyme-modified AlGaN/GaN field-effect transistors.
G. M. Müntze (2015)
10.1016/j.bios.2008.05.006
Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors.
D. Gonçalves (2008)
10.1039/b813846j
Carbon-based materials as supercapacitor electrodes.
L. Zhang (2009)
10.3390/s140405890
Hybrid Integrated Label-Free Chemical and Biological Sensors
S. Mehrabani (2014)
10.1002/ADMA.200802733
High-Performance Organic Field-Effect Transistors
D. Braga (2009)
10.1021/CR0501543
Electron and ambipolar transport in organic field-effect transistors.
J. Zaumseil (2007)
10.1007/S00216-005-3390-2
Chemical and biological sensors based on organic thin-film transistors
J. T. Mabeck (2006)
10.1021/nn305903q
Investigation of protein detection parameters using nanofunctionalized organic field-effect transistors.
Mallory L Hammock (2013)
10.1073/pnas.0910243107
Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor
T. Lin (2009)
10.1016/j.bios.2010.07.041
Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics: a review.
K. Balasubramanian (2010)
10.1002/JCTB.280630406
A novel multienzyme electrode for the determination of citrate
N. Gajovic (1995)
10.1021/NL072996I
Identifying the mechanism of biosensing with carbon nanotube transistors.
I. Heller (2008)
10.1039/c3cs35528d
Biosensors: sense and sensibility.
A. Turner (2013)
10.1021/AC0257905
Allele-specific genotype detection of factor V Leiden mutation from polymerase chain reaction amplicons based on label-free electrochemical genosensor.
Dilsat Ozkan (2002)
10.1021/BI971903G
Proton release upon glutathione binding to glutathione transferase P1-1: kinetic analysis of a multistep glutathione binding process.
A. M. Caccuri (1998)
10.1016/j.bios.2014.05.010
A device design of an integrated CMOS poly-silicon biosensor-on-chip to enhance performance of biomolecular analytes in serum samples.
Y. Pei-Wen (2014)
10.1021/la401109r
Effects of the electrode size and modification protocol on a label-free electrochemical biosensor.
S. Arya (2013)



This paper is referenced by
10.1109/UKRCON.2017.8100348
Low-noise high-speed Si nanowire field-effect transistors: Recent advances and opportunities in biosensor applications
S. A. Vitusevich (2017)
10.1109/ACCESS.2020.2987204
A Review of Carbon Nanotubes Field Effect-Based Biosensors
S. Alabsi (2020)
10.1186/s40824-019-0181-y
Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis
Il-Hoon Cho (2020)
10.1007/978-3-319-28926-7_7
Macromolecular Imprinting for Improved Health Security
P. S. Sharma (2016)
10.4236/AMPC.2017.73008
Influence of Temperature and Pentacene Thickness on the Electrical Parameters in Top Gate Organic Thin Film Transistor
A. K. Diallo (2017)
10.1002/adma.201603610
Sensing at the Surface of Graphene Field-Effect Transistors.
W. Fu (2017)
10.1016/j.bios.2017.06.049
Current advances and future visions on bioelectronic immunosensing for prostate-specific antigen.
C. Ibau (2017)
10.3390/s20030646
Recent Advances in Electrochemical and Optical Biosensors Designed for Detection of Interleukin 6
Munezza Ata Khan (2020)
10.1109/DTSS.2019.8915169
Humidity Sensor Using Subthreshold Regime of Flexible Organic Field Effect Transistor: Concomitant Effect of Gate Leakage Current and Semiconductor Conductivity
M. Erouel (2019)
10.1007/s13206-019-4110-x
Surface Sensitive Analysis Device using Model Membrane and Challenges for Biosensor-chip
J.-I. Baek (2020)
10.1117/12.2518890
Printable transistors for wearable sweat sensing
M. Rudolph (2019)
10.1007/s00604-016-2007-0
Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review
Junhui Xu (2016)
NA based chemical sensor for the detection of nitrogen dioxide nabled by organic field-effect transistor
ei Shi (2015)
10.1039/c8an02339e
A highly sensitive and versatile chiral sensor based on a top-gate organic field effect transistor functionalized with thiolated β-cyclodextrin.
Xue-peng Wang (2019)
Going Beyond the Debye Length: Overcoming Charge Screening Limitations in Next-Generation Bioelectronic Sensors
Vladimir Kesler (2020)
10.1007/s00604-019-3850-6
A review on nanomaterial-based field effect transistor technology for biomarker detection
L. Syedmoradi (2019)
10.1016/J.SNB.2015.09.040
DNA based chemical sensor for the detection of nitrogen dioxide enabled by organic field-effect transistor
W. Shi (2016)
10.1007/5346_2017_19
Silicon Nanowire Field-Effect Biosensors
Dipti Rani (2018)
10.1039/C8TC04999H
Water-stable organic field-effect transistors based on naphthodithieno[3,2-b]thiophene derivatives
C. Li (2019)
10.1016/j.bios.2017.07.010
Detection principles of biological and chemical FET sensors.
Matti Kaisti (2017)
10.1016/j.bios.2016.04.077
Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors.
K. Melzer (2016)
10.11591/IJECE.V9I2.PP926-933
Comprehensive identification of sensitive and stable ISFET sensing layer high-k gate based on ISFET/electrolyte models
Ahmed M. Dinar (2019)
Silicon Nanoribbon FET Sensors : Fabrication, Surface Modification and Microfluidic Integration
Roodabeh Afrasiabi (2016)
10.1002/9781119587422.ch2
Field Effect Transistor Technologies for Biological and Chemical Sensors
Anne-Claire Salaün (2020)
10.3390/s20195639
Capacitive Field-Effect EIS Chemical Sensors and Biosensors: A Status Report
A. Poghossian (2020)
10.1155/2019/4608135
Development of Potentiometric Phenol Sensors by Nata de Coco Membrane on Screen-Printed Carbon Electrode
Ani Mulyasuryani (2019)
Sähkökemiallisen leima- ja pesuvapaan DNA-sensorin kehittäminen PCR-pohjaiseen nukleiinihappodiagnostiikkaan
Eero Aarikka (2020)
10.1016/J.APSUSC.2016.10.195
Atomic Force Microscopy and Spectroscopic Ellipsometry combined analysis of Small Ubiquitin-like Modifier adsorption on functional monolayers
I. Solano (2017)
10.1038/s41598-017-16028-7
Real-time wash-free detection of unlabeled PNA-DNA hybridization using discrete FET sensor
Matti Kaisti (2017)
10.1088/2058-8585/AAC8A8
Label free urea biosensor based on organic electrochemical transistors
M. Berto (2018)
10.1002/9783527804856.CH3
Organic‐Based Transistors and Sensors
Aristide Gumyusenge (2018)
10.4236/JAMP.2016.47125
Electrical Instability in Pentacene Transistors with Mylar and PMMA/Mylar Gate Dielectrics Transferred by Lamination Process
Abdou Karim Diallo (2016)
See more
Semantic Scholar Logo Some data provided by SemanticScholar