Online citations, reference lists, and bibliographies.
← Back to Search

Predicting And Rationalizing The Effect Of Surface Charge Distribution And Orientation On Nano-wire Based FET Bio-sensors.

L. De Vico, L. Iversen, M. H. Sørensen, M. Brandbyge, J. Nygar̊d, K. Martinez, J. H. Jensen
Published 2011 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
A single charge screening model of surface charge sensors in liquids (De Vico et al., Nanoscale, 2011, 3, 706-717) is extended to multiple charges to model the effect of the charge distributions of analyte proteins on FET sensor response. With this model we show that counter-intuitive signal changes (e.g. a positive signal change due to a net positive protein binding to a p-type conductor) can occur for certain combinations of charge distributions and Debye lengths. The new method is applied to interpret published experimental data on Streptavidin (Ishikawa et al., ACS Nano, 2009, 3, 3969-3976) and Nucleocapsid protein (Ishikawa et al., ACS Nano, 2009, 3, 1219-1224).
This paper references
10.1063/1.3156657
Effects of charge screening and surface properties on signal transduction in field effect nanowire biosensors
Y. Liu (2009)
J. Mol. Graphics
A Humphrey (1996)
10.1021/bi100634h
Acridine-N peptide conjugates display enhanced affinity and specificity for boxB RNA targets.
X. Qi (2010)
J. Appl. Phys
I Hamberg (1986)
10.1088/1742-6596/107/1/012002
Theoretical model for the detection of charged proteins with a silicon-on-insulator sensor
S. Birner (2008)
10.1149/1.2956012
Multi - Scale Modeling and Simulation of Field-Effect Biosensors
C. Ringhofer (2008)
Nanoscale
10.1103/PHYSREVLETT.101.116808
Surface electron accumulation and the charge neutrality level in In2O3.
P. King (2008)
Electronic Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of
(2011)
10.3390/s90907111
Ion-Sensitive Field-Effect Transistor for Biological Sensing
C. Lee (2009)
10.2307/2004114
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
M. Abramowitz (1964)
10.1063/1.2211310
Performance limits of nanobiosensors
P. Nair (2006)
10.1038/nature05498
Label-free immunodetection with CMOS-compatible semiconducting nanowires
E. Stern (2007)
10.1063/1.2779930
Screening model for nanowire surface-charge sensors in liquid
M. H. Sørensen (2007)
10.1002/ELAN.200603609
Bio FEDs (Field‐Effect Devices): State‐of‐the‐Art and New Directions
M. J. Schöning (2006)
Nanoscale
De Vico (2011)
Nano Lett
Z Cui (2003)
10.1016/J.NANTOD.2009.06.003
Nanostructure-based electrical biosensors
S. Roy (2009)
10.1002/prot.20660
Very fast empirical prediction and rationalization of protein pKa values
H. Li (2005)
Biochemistry-US
L Huang (2004)
Appl. Phys. Lett
H Sørensen (2007)
10.1109/TED.2007.909059
Design Considerations of Silicon Nanowire Biosensors
P.R. Nair (2007)
10.1021/NL025875L
High Performance Silicon Nanowire Field Effect Transistors
Y. Cui (2003)
10.1021/NL071792Z
Importance of the Debye screening length on nanowire field effect transistor sensors.
E. Stern (2007)
Nucleic Acids Res
J Dolinsky (2004)
Phys. Status Solidi A
R Köstlin (1975)
Yacobi,Semiconductors Materials An Introduction to Basic Princip
B G. (2003)
10.1021/nn9011384
A calibration method for nanowire biosensors to suppress device-to-device variation.
F. Ishikawa (2009)
10.1002/prot.22102
Very fast prediction and rationalization of pKa values for protein–ligand complexes
Delphine Bas (2008)
10.3390/s8031400
Electrochemical Biosensors - Sensor Principles and Architectures
Dorothee Grieshaber (2008)
10.1016/0003-9861(64)90150-X
THE PROPERTIES OF STREPTAVIDIN, A BIOTIN-BINDING PROTEIN PRODUCED BY STREPTOMYCETES.
L. Chaiet (1964)
10.1137/080725027
Multiscale Modeling of Planar and Nanowire Field-Effect Biosensors
C. Heitzinger (2010)
10.1016/b978-0-12-391927-4.10024-6
Intermolecular and surface forces
J. Israelachvili (1985)
Ann. N.Y. Acad. Sci
D Li (1006)
J. Phys.: Condens. Matter
R Bellingham (1990)
10.1007/S10825-006-0139-X
Computational aspects of the three-dimensional feature-scale simulation of silicon-nanowire field-effect sensors for DNA detection
C. Heitzinger (2007)
10.1039/c0nr00442a
Quantifying signal changes in nano-wire based biosensors.
L. De Vico (2011)
10.1088/1742-6596/107/1/012004
Modeling and simulation of field-effect biosensors (BioFETs) and their deployment on the nanoHUB
C. Heitzinger (2008)
10.1016/j.microrel.2006.10.003
Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design
M. W. Shinwari (2007)
Semiconductor Materials: An Introduction to Basic Principles
B. G. Yacobi (2003)
10.1021/NL034853B
Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors
J. H. and (2004)
10.1073/PNAS.92.8.3180
Intersubunit contacts made by tryptophan 120 with biotin are essential for both strong biotin binding and biotin-induced tighter subunit association of streptavidin.
T. Sano (1995)
10.1021/nn900086c
Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes.
F. Ishikawa (2009)
10.1006/JCIS.2001.7484
Pristine Points of Zero Charge of Gallium and Indium Oxides.
M. Kosmulski (2001)
10.1021/nl072593i
Screening-limited response of nanobiosensors.
P. Nair (2008)
Nanowires for chemical sensing in a liquid environment
H Sørensen (2007)
10.1016/S1050-3862(99)00041-8
Extremely high thermal stability of streptavidin and avidin upon biotin binding.
M. González (1999)



This paper is referenced by
10.1021/acsomega.9b01264
Signal Enhancement of Silicon Nanowire Field-Effect Transistor Immunosensors by RNA Aptamer
Cao-An Vu (2019)
10.1088/0957-4484/24/3/035501
Effects of buffer composition and dilution on nanowire field-effect biosensors.
Noémie Lloret (2013)
10.1063/1.4878659
Indium arsenide nanowire field-effect transistors for pH and biological sensing
Shivendra Upadhyay (2014)
Spatial network conduction in carbon nanotube and Ag-Ag₂S-Ag atomic switch network device platforms
Leo Browning (2019)
Modeling and simulation of nanowire based field-effect biosensors
S. Baumgartner (2012)
10.1109/JSEN.2018.2849006
Protein Sensing Beyond the Debye Length Using Graphene Field-Effect Transistors
Malkolm Hinnemo (2018)
10.1016/j.bios.2014.10.005
Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules.
T. Adam (2015)
10.2174/1385272819666150318222230
Field-Effect Transistors Based on Organic and Carbon-Based Materials for Chemical and Biological Sensors
J. Bae (2015)
10.1016/J.SSE.2014.04.011
Models for the use of commercial TCAD in the analysis of silicon-based integrated biosensors
F. Pittino (2014)
10.1109/ULIS.2014.6813901
Hybrid system for complex AC sensing of nanowires
M. Rossi (2014)
10.1021/nl2042276
Thin film polycrystalline silicon nanowire biosensors.
M. A. Hakim (2012)
10.3390/molecules25030680
Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors
Cao-An Vu (2020)
10.1088/1674-1056/24/6/068102
Silicon nanowire formed via shallow anisotropic etching Si-ash-trimming for specific DNA and electrochemical detection
A. Tijjani (2015)
10.1039/c6cp04101a
Dynamic behaviour of the silica-water-bio electrical double layer in the presence of a divalent electrolyte.
B. Lowe (2017)
10.1039/c2nr12038k
Determination of surface concentrations of individual molecule-layers used in nanoscale biosensors by in situ ATR-FTIR spectroscopy.
M. Punzet (2012)
10.1109/IEDM.2014.7047146
An AC and phase nanowire sensing for site-binding detection
M. Tartagni (2014)
10.1109/JSEN.2018.2808948
Dielectric Modulated Biosensor Architecture: Tunneling or Accumulation Based Transistor?
P. Dwivedi (2018)
10.1007/5346_2017_19
Silicon Nanowire Field-Effect Biosensors
Dipti Rani (2018)
10.1088/0957-4484/24/22/225503
Predictive simulations and optimization of nanowire field-effect PSA sensors including screening.
S. Baumgartner (2013)
10.1002/PSSA.201700740
Impedimetric Sensing of DNA with Silicon Nanowire Transistors as Alternative Transducer Principle
M. Schwartz (2018)
10.1371/journal.pone.0045379
BioFET-SIM Web Interface: Implementation and Two Applications
M. Hediger (2012)
10.1063/1.5002388
Lab-on-chip components for molecular detection
Tijjani Adam (2017)
10.7567/JJAP.57.04FM02
Calculation of surface potentials at the silica–water interface using molecular dynamics: Challenges and opportunities
B. Lowe (2018)
10.1039/c8nr00776d
Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge.
B. Lowe (2018)
10.1039/c7an00455a
Field-effect sensors - from pH sensing to biosensing: sensitivity enhancement using streptavidin-biotin as a model system.
Benjamin M. Lowe (2017)
10.1016/J.SSE.2013.04.016
Numerical and analytical models to investigate the AC high-frequency response of nanoelectrode/SAM/electrolyte capacitive sensing elements
F. Pittino (2013)
10.1007/978-3-319-02772-2_3
BioFET-SIM: A Tool for the Analysis and Prediction of Signal Changes in Nanowire-Based Field Effect Transistor Biosensors
M. Hediger (2013)
10.1039/C5TC00755K
Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules.
W. Huang (2015)
Semantic Scholar Logo Some data provided by SemanticScholar