Online citations, reference lists, and bibliographies.
← Back to Search

Kinetics And Mechanisms Of Catalase In Peroxisomes Of The Mitochondrial Fraction

B. Chance, N. Oshino

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
1. The primary intermediate of catalase and hydrogen peroxide was identified and investigated in peroxisome-rich mitochondrial fractions of rat liver. On the basis of kinetic constants determined in vitro, it is possible to calculate with reasonable precision the molecular statistics of catalase action in the peroxisomes. 2. The endogenous hydrogen peroxide generation is adequate to sustain a concentration of the catalase intermediate (pm/e) of 60–70% of the hydrogen peroxide saturation value. Total amount of catalase corresponds to 0.12–0.15nmol of haem iron/mg of protein. In State 1 the rate of hydrogen peroxide generation corresponds to 0.9nmol/min per mg of protein or 5′ of the mitochondrial respiratory rate in State 4. 3. Partial saturation of the catalase intermediate with hydrogen peroxide (pm/e) in the mitochondrial fraction suggests its significant peroxidatic activity towards its endogenous hydrogen donor. A variation of this value (pm/e) from 0.3 in State 4 to 0 under anaerobic conditions is observed. 4. For a particular preparation the hydrogen peroxide generation rate in the substrate-supplemented State 4 corresponds to 0.17s-1 (eqn. 6), the hydrogen peroxide concentration to 2.5nm and the hydrogen-donor concentration (in terms of ethanol) to 0.12mm. The reaction is 70% peroxidatic and 30′ catalatic. 5. A co-ordinated production of both oxidizing and reducing substrates for catalase in the mitochondrial fraction is suggested by a 2.2-fold increase of hydrogen peroxide generation and a threefold increase in hydrogen-donor generation in the State 1 to State 4 transition. 6. Additional hydrogen peroxide generation provided by the urate oxidase system of peroxisomes (8–12nmol of uric acid oxidized/min per mg of protein) permits saturation of the catalase with hydrogen peroxide to haem occupancy of 40′ compared with values of 36′ for a purified rat liver catalase ofk1=1.7×107m-1·s-1 and k′4=2.6×107m-1· s-1(Chance, Greenstein & Roughton, 1952). 7. The turnover of the catalase ethyl hydrogen peroxide intermediate (k′3) in the peroxisomes is initially very rapid since endogenous hydrogen peroxide acts as a hydrogen donor. k′3 decreases fivefold in the uncoupled state of the mitochondria.