Online citations, reference lists, and bibliographies.
← Back to Search

Impact Of Ionic Aggregate Structure On Ionomer Mechanical Properties From Coarse-grained Molecular Dynamics Simulations.

J. Sampath, L. Hall
Published 2017 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Using coarse-grained molecular dynamics simulations, we study ionomers in equilibrium and under uniaxial tensile deformation. The spacing of ions along the chain is varied, allowing us to consider how different ionic aggregate morphologies, from percolated to discrete aggregates, impact the mechanical properties. From the equilibrium simulations, we calculate the stress-stress auto correlation function, showing a distinct deviation from the Rouse relaxation due to ionic associations that depends on ion content. We then quantify the morphology during strain, particularly the degree to which both chains and ionic aggregates tend to align. We also track the location of the ionomer peak in the anisotropic structure factor during strain. The length scale of aggregate order increases in the axial direction and decreases in the transverse direction, in qualitative agreement with prior experimental results.
This paper references
10.1021/MA0203952
Imaging and X-ray Microanalysis of a Poly(ethylene-ran-methacrylic acid) Ionomer Melt Neutralized with Sodium
A. Taubert (2002)
10.1016/0032-3861(89)90037-2
Synthesis and characterization of sulphonated polyurethane ionomers based on toluene diisocyanate
Y. Ding (1989)
10.1021/MA400848M
Influence of Cation Type on Ionic Aggregates in Precise Ionomers
Dan S. Bolintineanu (2013)
10.1016/J.POLYMER.2003.07.011
Molecular response of a glassy polymer to active deformation
F. Capaldi (2004)
10.1016/0032-3861(94)90398-0
Structure and properties of poly(tetrahydrofuran) viologen ionene: effects of halide counter-anions
T. Hashimoto (1994)
10.1021/MA00034A026
Two-dimensional small-angle x-ray scattering investigation of ionomer deformation and evaluation of models of ionomer morphology
S. A. Visser (1992)
10.1103/PhysRevLett.105.068301
Stress relaxation in entangled polymer melts.
Ji-Xuan Hou (2010)
10.1021/MA00139A013
Hard-sphere interactions between spherical domains in diblock copolymers
D. J. Kinning (1984)
10.1016/J.POLYMER.2013.03.017
Effect of polymer solvent on the mechanical properties of entangled polymer gels: Coarse-grained molecular simulation
Yelena R. Sliozberg (2013)
10.1007/S00396-002-0708-X
Elastic modulus and relaxation times in telechelic associating polymers
J. Le Meins (2003)
10.1021/MA070843B
Linear viscoelasticity from molecular dynamics simulation of entangled polymers
A. E. Likhtman (2007)
10.1063/1.1628670
Equilibration of long chain polymer melts in computer simulations
R. Auhl (2003)
10.1103/PHYSREVLETT.97.045502
Influence of confinement on the fragility of antiplasticized and pure polymer films.
Robert A Riggleman (2006)
10.1103/PHYSREVLETT.106.127801
Effect of polymer architecture and ionic aggregation on the scattering peak in model ionomers.
L. Hall (2011)
10.1021/MA4020998
Sawtooth Tensile Response of Model Semiflexible and Block Copolymer Elastomers
B. Aguilera-Mercado (2014)
10.1021/MA00246A013
Microstructure of ionomers: interpretation of small-angle x-ray scattering data
D. J. Yarusso (1983)
10.1021/MA035487L
Viscoelastic properties of polymer melts from equilibrium molecular dynamics simulations
S. Sen (2005)
10.1063/1.458541
Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation
K. Kremer (1990)
10.1021/MZ400476W
Linear viscoelastic and dielectric properties of phosphonium siloxane Ionomers
Quan Chen (2013)
10.1103/PHYSREVE.75.031803
Calculation of local mechanical properties of filled polymers.
G. Papakonstantopoulos (2007)
10.1021/ja101991d
Nanoscale morphology in precisely sequenced poly(ethylene-co-acrylic acid) zinc ionomers.
Michelle E. Seitz (2010)
10.1021/MA070933G
Precision Ethylene/Vinyl Chloride Polymers via Condensation Polymerization
Emine Boz (2007)
10.1088/0965-0393/24/6/065002
Nonaffine chain and primitive path deformation in crosslinked polymers
J. Davidson (2016)
10.1590/S1679-78252013000400010
The strain-rate effect of engineering materials and its unified model
Yu Shui-sheng (2013)
10.1016/0263-7855(96)00018-5
VMD: visual molecular dynamics.
W. Humphrey (1996)
10.1021/MA301308N
Dynamics of Model Ionomer Melts of Various Architectures
L. Hall (2012)
10.1006/JCPH.1995.1039
Fast parallel algorithms for short-range molecular dynamics
S. Plimpton (1993)
10.1103/PHYSREVLETT.112.195702
Frozen topology: entanglements control nucleation and crystallization in polymers.
Chuanfu Luo (2014)
10.1016/J.IJSOLSTR.2005.06.040
Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress
Julien Richeton (2006)
10.1021/MA00016A034
Dynamics of reversible networks
L. Leibler (1991)
10.1021/MA800018F
Connectivity and Entanglement Stress Contributions in Strained Polymer Networks
Carsten Svaneborg (2008)
10.1021/JP048581S
An Improved Force Field for the Prediction of the Vapor−Liquid Equilibria for Carboxylic Acids
Ganesh Kamath (2004)
10.1021/MA1026115
Plastic Deformation of Semicrystalline Polyethylene by Molecular Simulation
Sanghun Lee (2011)
10.1016/S0032-3861(03)00017-X
Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension
M. Lavine (2003)
10.1021/MA00229A028
Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum
M. Fujimura (1982)
10.1021/MA060670A
Direct Calculation of the Tube Potential Confining Entangled Polymers
Q. Zhou (2006)
10.1103/PhysRevE.80.031803
Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length.
R. Hoy (2009)
10.1021/MA501916Z
Structure and Dynamics of Coarse-Grained Ionomer Melts in an External Electric Field
Christina Ting (2015)
10.1063/1.3587138
Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics.
Jonathan D. Halverson (2011)
10.1007/BF00574864
The strain-rate, temperature and pressure dependence of yield of isotropic poly(methylmethacrylate) and poly(ethylene terephthalate)
R. Duckett (1970)
10.1021/MA0003755
Structure of Ionic Aggregates of Ionomers. 1. Variation in the Structure of Ionic Aggregates with Different Acid Content and Degree of Neutralization of Ethylene and Styrene Ionomers
Y. Tsujita (2001)
10.1063/1.474781
Extended ensemble molecular dynamics method for constant strain rate uniaxial deformation of polymer systems
L. Yang (1997)
10.1063/1.4855715
Simulation of a small molecule analogue of a lithium ionomer in an external electric field.
S. Waters (2014)
10.1002/APP.1991.070420207
Effect of metal cation type on the structure and properties of ethylene ionomers
E. Hirasawa (1991)
10.1021/JP054845E
Molecular dynamics simulations of ordering of poly(dimethylsiloxane) under uniaxial stress.
Naida M. Lačević (2006)
10.1021/ma501473q
Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements, and Crazing
T. Ge (2014)
10.1002/POLB.23788
Roles of chain stiffness and segmental rattling in ionomer glass formation
Dihui Ruan (2015)
10.1021/MA052359J
SAXS Analysis of the Thermal Relaxation of Anisotropic Morphologies in Oriented Nafion Membranes
Kirt A. Page (2006)
10.1002/APP.35310
Effects of neutralization on the structure and properties of an ionomer
Y. Gao (2012)
10.1103/PhysRevE.82.041802
Evolution of entanglements during the response to a uniaxial deformation of lamellar triblock copolymers and polymer glasses.
F. Léonforte (2010)
10.1021/MA5022117
Direct Comparisons of X-ray Scattering and Atomistic Molecular Dynamics Simulations for Precise Acid Copolymers and Ionomers
C. Buitrago (2015)
10.1021/MA020396U
The Role of Excess Acid Groups in the Dynamics of Ethylene−Methacrylic Acid Ionomer Melts
N. Tierney (2002)
10.1021/MA991917P
Small-Angle X-ray Scattering Investigation of Noncrystalline Poly(ethylene-co-methacrylic acid) Ionomers
S. Kutsumizu (2000)
10.1021/ACS.MACROMOL.5B00797
Hierarchical Acrylic Acid Aggregate Morphologies Produce Strain-Hardening in Precise Polyethylene-Based Copolymers
L. R. Middleton (2015)
10.1021/MA802865N
Dynamics of a Glassy Polymer Nanocomposite during Active Deformation
Robert A Riggleman (2009)
10.1002/POL.1980.180180702
Small‐angle x‐ray scattering study of ionomer deformation
E. J. Roche (1980)
10.1016/0032-3861(92)90680-U
Small-angle X-ray scattering investigation of ionomer deformation : effect of neutralizing cation
S. A. Visser (1992)
10.1002/MACP.201500466
Modeling the Effect of Polymer Composition on Ionic Aggregation in Poly(propylene glycol)‐Based Ionenes
P. Vijayaraghavan (2016)
10.1021/MZ300611N
Atomistic Simulations Predict a Surprising Variety of Morphologies in Precise Ionomers
Dan S. Bolintineanu (2013)
10.1016/J.POLYMER.2013.07.018
Effect of particle size and grafting density on the mechanical properties of polymer nanocomposites
H. Chao (2013)
10.1002/MREN.201300181
Perspective: Ionomer Research and Applications
Liqun Zhang (2014)
10.1021/ACS.MACROMOL.5B00025
Glass Formation near Covalently Grafted Interfaces: Ionomers as a Model Case
Dihui Ruan (2015)
10.1016/J.POLYMER.2008.10.049
Rate dependent finite deformation stress–strain behavior of an ethylene methacrylic acid copolymer and an ethylene methacrylic acid butyl acrylate copolymer
S. Deschanel (2009)
10.1016/j.cpc.2009.01.028
Coding coarse grained polymer model for LAMMPS and its application to polymer crystallization
Chuanfu Luo (2009)
10.1122/1.3003570
Rheological behavior of oligomeric ionomers
R. Weiss (2009)
10.1021/ja209142b
Ionic aggregate structure in ionomer melts: effect of molecular architecture on aggregates and the ionomer peak.
L. Hall (2012)
10.1021/MA00199A048
Infrared dichroic study of orientation using ionomers
Y. Zhao (1989)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar