Online citations, reference lists, and bibliographies.
← Back to Search

Quantum Interference In Multi-branched Molecules: The Exact Transfer Matrix Solutions.

Yu Jiang
Published 2017 · Physics, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
We present a transfer matrix formalism for studying quantum interference in a single molecule electronic system with internal branched structures. Based on the Schrödinger equation with the Bethe ansatz and employing Kirchhoff's rule for quantum wires, we derive a general closed-form expression for the transmission and reflection amplitudes of a two-port quantum network. We show that the transport through a molecule with complex internal structures can be reduced to that of a single two-port scattering unit, which contains all the information of the original composite molecule. Our method allows for the calculation of the transmission coefficient for various types of individual molecular modules giving rise to different resonant transport behaviors such as the Breit-Wigner, Fano, and Mach-Zehnder resonances. As an illustration, we first re-derive the transmittance of the Aharonov-Bohm ring, and then we apply our formulation to N identical parity-time (PT)-symmetric potentials, connected in series as well as in parallel. It is shown that the spectral singularities and PT-symmetric transitions of single scattering cells may be observed in coupled systems. Such transitions may occur at the same or distinct values of the critical parameters, depending on the connection modes under which the scattering objects are coupled.
This paper references
10.1038/nature00791
Coulomb blockade and the Kondo effect in single-atom transistors
J. Park (2002)
10.1038/nnano.2013.91
Single-molecule junctions beyond electronic transport.
Swaroop Aradhya (2013)
10.1103/PHYSREVLETT.50.747
Quantum Conduction on a Cayley Tree
B. Shapiro (1983)
10.1038/nnano.2006.130
Electron transport in molecular junctions
N. Tao (2006)
10.1021/NL0519027
Vibrational excitations in single trimetal-molecule transistors.
D. Chae (2006)
10.1103/PHYSREVA.30.1982
Quantum oscillations in one-dimensional normal-metal rings
M. Buttiker (1984)
10.1103/PHYSREVB.56.4722
CONDUCTANCE AND TRANSPARENCE OF LONG MOLECULAR WIRES
M. Magoga (1997)
10.1021/jacs.5b00448
Molecular series-tunneling junctions.
Kung-Ching Liao (2015)
10.1103/PhysRevLett.101.060401
Quantum circuit architecture.
G. Chiribella (2008)
10.1021/nl401340c
Single-molecule electric revolving door.
L. Hsu (2013)
10.1126/SCIENCE.1081572
Electron Transport in Molecular Wire Junctions
A. Nitzan (2003)
10.1103/PhysRevB.83.075437
Quantum interference in single molecule electronic systems
R. Sparks (2011)
10.1088/0305-4470/20/17/004
Control of the quantum path-target state distance: bistable-like characteristic in a small tight-binding system
C. Joachim (1987)
10.1063/1.4972572
Destructive quantum interference in electron transport: A reconciliation of the molecular orbital and the atomic orbital perspective
X. Zhao (2017)
10.1063/1.477116
Molecule-interface coupling effects on electronic transport in molecular wires
S. Yaliraki (1998)
10.1021/ja201223n
A molecular half-wave rectifier.
C. A. Nijhuis (2011)
10.1016/0009-2614(88)85252-7
Electronic interference produced by a benzene embedded in a polyacetylene chain
P. Sautet (1988)
10.1063/1.3259548
Interfering pathways in benzene: an analytical treatment.
T. Hansen (2009)
10.1103/PHYSREVLETT.68.2512
Landauer formula for the current through an interacting electron region.
Meir (1992)
10.1038/NMAT1349
Towards molecular spintronics
A. R. Rocha (2005)
10.1021/JP801926D
Charge Transport Through a Single Molecular Wire Based on Linear Multimetal Complexes : A Non-Equilibrium Green's Function Approach
L. Hsu (2008)
10.1063/1.4972131
Theory of molecular conductance using a modular approach.
L. Hsu (2016)
10.1002/ADMA.200601140
Molecular Transport Junctions: Clearing Mists
S. Lindsay (2007)
10.1103/PHYSREVLETT.113.263905
Unidirectional spectral singularities.
H. Ramezani (2014)
10.1021/ja4088538
Conductance of tailored molecular segments: a rudimentary assessment by Landauer formulation.
Min-Jie Huang (2014)
10.1103/PhysRevLett.106.213901
Unidirectional invisibility induced by PT-symmetric periodic structures.
Z. Lin (2011)
10.1103/PHYSREVB.62.7325
Electrical conductance of parallel atomic wires
N. Lang (2000)
10.1088/0305-4470/29/1/011
Contact interactions on graph superlattices
P. Exner (1996)
10.1103/PHYSREVLETT.52.129
Quantum Oscillations and the Aharonov-Bohm Effect for Parallel Resistors
Y. Gefen (1984)
10.1063/1.476841
CONDUCTANCE SPECTRA OF MOLECULAR WIRES
W. Tian (1998)
10.1103/PhysRevA.71.052315
Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels
D. Burgarth (2005)
10.1038/nnano.2012.147
Probing the conductance superposition law in single-molecule circuits with parallel paths
H. Vázquez (2012)
10.1103/PhysRevX.4.041041
Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links
N. Nickerson (2014)
10.1016/J.CPLETT.2008.04.025
Bandwidth, intensity, and lineshape of the transmission spectrum in the single molecular junction
L. Hsu (2008)
10.1103/PhysRevA.85.023802
Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures
Li Ge (2012)
10.1038/srep30198
Parallel Quantum Circuit in a Tunnel Junction
Omid Faizy Namarvar (2016)
10.1039/c4cs00203b
Basic concepts of quantum interference and electron transport in single-molecule electronics.
C. Lambert (2015)
10.1103/PhysRevB.96.085421
Quantum interference in coherent tunneling through branched molecular junctions containing ferrocene centers
X. Zhao (2017)
10.1103/PhysRevLett.106.093902
PT-symmetry breaking and laser-absorber modes in optical scattering systems.
Y. Chong (2011)
10.1103/PHYSREVLETT.80.2677
Resonant Tunneling and Band Mixing in Multichannel Superlattices
P. Pereyra (1998)
10.1103/PhysRevLett.103.266807
Quantum interference in coherent molecular conductance.
Julián Rincón (2009)
10.1088/0305-4470/32/4/006
Kirchhoff's rule for quantum wires
V. Kostrykin (1999)
10.1103/PhysRevB.85.155440
Magnetic fields effects on the electronic conduction properties of molecular ring structures
D. Rai (2012)
10.1002/ANIE.200600800
Conductance and stochastic switching of ligand-supported linear chains of metal atoms.
I. Chen (2006)
10.1103/PHYSREVB.63.245407
Ab initio modeling of quantum transport properties of molecular electronic devices
J. Taylor (2001)
10.1103/PhysRevB.94.115424
Controlling local currents in molecular junctions
Hari Kumar Yadalam (2016)
10.1103/PHYSREVB.23.6851
Relation between conductivity and transmission matrix
D. Fisher (1981)
10.1063/1.4895963
Light-driven electron transport through a molecular junction based on cross-conjugated systems.
L. Hsu (2014)
10.1103/PHYSREVB.39.12989
Two types of conductance minima in electrostatic Aharonov-Bohm conductance oscillations.
Cahay (1989)
10.1119/1.1308266
Waves in locally periodic media
D. J. Griffiths (2001)
10.1103/PHYSREVLETT.109.186801
Single-molecule phenyl-acetylene-macrocycle-based optoelectronic switch functioning as a quantum-interference-effect transistor.
L. Hsu (2012)
10.1103/PHYSREVA.88.022323
Multipath adiabatic quantum state transfer
B. Chen (2013)
10.1063/1.468314
Electron conduction in molecular wires. I. A scattering formalism
V. Mujica (1994)
10.1039/C6CP06362D
Conductance and activation energy for electron transport in series and parallel intramolecular circuits.
L. Hsu (2016)
10.1021/JP993260F
Electron Transfer Rates in Bridged Molecular Systems 2. A Steady-State Analysis of Coherent Tunneling and Thermal Transitions†
Dvira Segal and (2000)
10.1038/nature00790
Kondo resonance in a single-molecule transistor
W. Liang (2002)
10.1016/J.CHEMPHYS.2008.12.015
An investigation of quantum transport by the free-electron network model: Resonance and interference effects
L. Hsu (2009)
10.1021/acs.nanolett.5b04715
A New Approach to Materials Discovery for Electronic and Thermoelectric Properties of Single-Molecule Junctions.
David Zsolt Manrique (2016)
10.1038/35046000
Electronics using hybrid-molecular and mono-molecular devices
C. Joachim (2000)
10.1073/PNAS.0408888102
A single-molecule diode.
Mark Elbing (2005)
10.1119/1.17306
Scattering by a finite periodic potential
D. W. Sprung (1993)
10.1063/1.1699299
Free‐Electron Network Model for Conjugated Systems. I. Theory
K. Ruedenberg (1953)
10.1063/1.4901722
Communication: Finding destructive interference features in molecular transport junctions.
M. G. Reuter (2014)
10.1103/PhysRevA.82.031801
PT-symmetric laser absorber
S. Longhi (2010)
10.1021/acs.chemrev.5b00680
Molecular-Scale Electronics: From Concept to Function.
D. Xiang (2016)
10.1364/JOSA.67.000423
Electromagnetic propagation in periodic stratified media. I. General theory
P. Yeh (1977)
10.1103/PhysRevE.85.057202
Möbius transformations and electronic transport properties of large disorderless networks.
Yu Jiang (2012)
10.1021/nl0608442
Controlling quantum transport through a single molecule.
D. Cardamone (2006)
10.1038/nnano.2013.110
A brief history of molecular electronics.
M. Ratner (2013)
10.1103/PHYSREVB.45.3593
Quantum waveguide theory for mesoscopic structures.
Xia (1992)
10.1103/PhysRevB.65.165401
Density-functional method for nonequilibrium electron transport
M. Brandbyge (2002)
10.1088/0957-4484/25/20/205402
Redox control of thermopower and figure of merit in phase-coherent molecular wires.
V. García-Suárez (2014)
10.1088/0959-7174/14/1/014
Quantum graphs: I. Some basic structures
P. Kuchment (2004)
10.1038/ncomms4225
Photonic Aharonov–Bohm effect in photon–phonon interactions
E. Li (2014)
10.1021/nl8016175
Quantum-interference-controlled molecular electronics.
S. Ke (2008)
10.1088/0034-4885/78/8/082001
Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.
Federico Levi (2015)
10.1063/1.1739935
Free‐Electron Network Model for Conjugated Systems. V. Energies and Electron Distributions in the FE MO Model and in the LCAO MO Model
K. Ruedenberg (1954)
10.1088/1751-8113/48/35/355301
An analytical study of quantum walk through glued-tree graphs
Z. Li (2015)
10.1016/S0301-0104(02)00446-9
First-principles based matrix Green's function approach to molecular electronic devices: general formalism
Yongqiang Xue (2002)
10.1103/PHYSREVB.59.16011
Conductance of molecular wires connected or bonded in parallel
M. Magoga (1999)
10.1021/nn1021499
An all-electric single-molecule motor.
J. S. Seldenthuis (2010)
10.1016/S0009-2614(97)00014-6
An electromechanical amplifier using a single molecule
C. Joachim (1997)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar