← Back to Search

DOI: 10.1063/1.4989872

# Quantum Interference In Multi-branched Molecules: The Exact Transfer Matrix Solutions.

Yu Jiang

Published 2017 · Physics, Medicine

We present a transfer matrix formalism for studying quantum interference in a single molecule electronic system with internal branched structures. Based on the Schrödinger equation with the Bethe ansatz and employing Kirchhoff's rule for quantum wires, we derive a general closed-form expression for the transmission and reflection amplitudes of a two-port quantum network. We show that the transport through a molecule with complex internal structures can be reduced to that of a single two-port scattering unit, which contains all the information of the original composite molecule. Our method allows for the calculation of the transmission coefficient for various types of individual molecular modules giving rise to different resonant transport behaviors such as the Breit-Wigner, Fano, and Mach-Zehnder resonances. As an illustration, we first re-derive the transmittance of the Aharonov-Bohm ring, and then we apply our formulation to N identical parity-time (PT)-symmetric potentials, connected in series as well as in parallel. It is shown that the spectral singularities and PT-symmetric transitions of single scattering cells may be observed in coupled systems. Such transitions may occur at the same or distinct values of the critical parameters, depending on the connection modes under which the scattering objects are coupled.

This paper references

10.1038/nature00791

Coulomb blockade and the Kondo effect in single-atom transistors

J. Park (2002)

10.1038/nnano.2013.91

Single-molecule junctions beyond electronic transport.

Swaroop Aradhya (2013)

10.1103/PHYSREVLETT.50.747

Quantum Conduction on a Cayley Tree

B. Shapiro (1983)

10.1038/nnano.2006.130

Electron transport in molecular junctions

N. Tao (2006)

10.1021/NL0519027

Vibrational excitations in single trimetal-molecule transistors.

D. Chae (2006)

10.1103/PHYSREVA.30.1982

Quantum oscillations in one-dimensional normal-metal rings

M. Buttiker (1984)

10.1103/PHYSREVB.56.4722

CONDUCTANCE AND TRANSPARENCE OF LONG MOLECULAR WIRES

M. Magoga (1997)

10.1021/jacs.5b00448

Molecular series-tunneling junctions.

Kung-Ching Liao (2015)

10.1103/PhysRevLett.101.060401

Quantum circuit architecture.

G. Chiribella (2008)

10.1021/nl401340c

Single-molecule electric revolving door.

L. Hsu (2013)

10.1126/SCIENCE.1081572

Electron Transport in Molecular Wire Junctions

A. Nitzan (2003)

10.1103/PhysRevB.83.075437

Quantum interference in single molecule electronic systems

R. Sparks (2011)

10.1088/0305-4470/20/17/004

Control of the quantum path-target state distance: bistable-like characteristic in a small tight-binding system

C. Joachim (1987)

10.1063/1.4972572

Destructive quantum interference in electron transport: A reconciliation of the molecular orbital and the atomic orbital perspective

X. Zhao (2017)

10.1063/1.477116

Molecule-interface coupling effects on electronic transport in molecular wires

S. Yaliraki (1998)

10.1021/ja201223n

A molecular half-wave rectifier.

C. A. Nijhuis (2011)

10.1016/0009-2614(88)85252-7

Electronic interference produced by a benzene embedded in a polyacetylene chain

P. Sautet (1988)

10.1063/1.3259548

Interfering pathways in benzene: an analytical treatment.

T. Hansen (2009)

10.1103/PHYSREVLETT.68.2512

Landauer formula for the current through an interacting electron region.

Meir (1992)

10.1038/NMAT1349

Towards molecular spintronics

A. R. Rocha (2005)

10.1021/JP801926D

Charge Transport Through a Single Molecular Wire Based on Linear Multimetal Complexes : A Non-Equilibrium Green's Function Approach

L. Hsu (2008)

10.1063/1.4972131

Theory of molecular conductance using a modular approach.

L. Hsu (2016)

10.1002/ADMA.200601140

Molecular Transport Junctions: Clearing Mists

S. Lindsay (2007)

10.1103/PHYSREVLETT.113.263905

Unidirectional spectral singularities.

H. Ramezani (2014)

10.1021/ja4088538

Conductance of tailored molecular segments: a rudimentary assessment by Landauer formulation.

Min-Jie Huang (2014)

10.1103/PhysRevLett.106.213901

Unidirectional invisibility induced by PT-symmetric periodic structures.

Z. Lin (2011)

10.1103/PHYSREVB.62.7325

Electrical conductance of parallel atomic wires

N. Lang (2000)

10.1088/0305-4470/29/1/011

Contact interactions on graph superlattices

P. Exner (1996)

10.1103/PHYSREVLETT.52.129

Quantum Oscillations and the Aharonov-Bohm Effect for Parallel Resistors

Y. Gefen (1984)

10.1063/1.476841

CONDUCTANCE SPECTRA OF MOLECULAR WIRES

W. Tian (1998)

10.1103/PhysRevA.71.052315

Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels

D. Burgarth (2005)

10.1038/nnano.2012.147

Probing the conductance superposition law in single-molecule circuits with parallel paths

H. Vázquez (2012)

10.1103/PhysRevX.4.041041

Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links

N. Nickerson (2014)

10.1016/J.CPLETT.2008.04.025

Bandwidth, intensity, and lineshape of the transmission spectrum in the single molecular junction

L. Hsu (2008)

10.1103/PhysRevA.85.023802

Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures

Li Ge (2012)

10.1038/srep30198

Parallel Quantum Circuit in a Tunnel Junction

Omid Faizy Namarvar (2016)

10.1039/c4cs00203b

Basic concepts of quantum interference and electron transport in single-molecule electronics.

C. Lambert (2015)

10.1103/PhysRevB.96.085421

Quantum interference in coherent tunneling through branched molecular junctions containing ferrocene centers

X. Zhao (2017)

10.1103/PhysRevLett.106.093902

PT-symmetry breaking and laser-absorber modes in optical scattering systems.

Y. Chong (2011)

10.1103/PHYSREVLETT.80.2677

Resonant Tunneling and Band Mixing in Multichannel Superlattices

P. Pereyra (1998)

10.1103/PhysRevLett.103.266807

Quantum interference in coherent molecular conductance.

Julián Rincón (2009)

10.1088/0305-4470/32/4/006

Kirchhoff's rule for quantum wires

V. Kostrykin (1999)

10.1103/PhysRevB.85.155440

Magnetic fields effects on the electronic conduction properties of molecular ring structures

D. Rai (2012)

10.1002/ANIE.200600800

Conductance and stochastic switching of ligand-supported linear chains of metal atoms.

I. Chen (2006)

10.1103/PHYSREVB.63.245407

Ab initio modeling of quantum transport properties of molecular electronic devices

J. Taylor (2001)

10.1103/PhysRevB.94.115424

Controlling local currents in molecular junctions

Hari Kumar Yadalam (2016)

10.1103/PHYSREVB.23.6851

Relation between conductivity and transmission matrix

D. Fisher (1981)

10.1063/1.4895963

Light-driven electron transport through a molecular junction based on cross-conjugated systems.

L. Hsu (2014)

10.1103/PHYSREVB.39.12989

Two types of conductance minima in electrostatic Aharonov-Bohm conductance oscillations.

Cahay (1989)

10.1119/1.1308266

Waves in locally periodic media

D. J. Griffiths (2001)

10.1103/PHYSREVLETT.109.186801

Single-molecule phenyl-acetylene-macrocycle-based optoelectronic switch functioning as a quantum-interference-effect transistor.

L. Hsu (2012)

10.1103/PHYSREVA.88.022323

Multipath adiabatic quantum state transfer

B. Chen (2013)

10.1063/1.468314

Electron conduction in molecular wires. I. A scattering formalism

V. Mujica (1994)

10.1039/C6CP06362D

Conductance and activation energy for electron transport in series and parallel intramolecular circuits.

L. Hsu (2016)

10.1021/JP993260F

Electron Transfer Rates in Bridged Molecular Systems 2. A Steady-State Analysis of Coherent Tunneling and Thermal Transitions†

Dvira Segal and (2000)

10.1038/nature00790

Kondo resonance in a single-molecule transistor

W. Liang (2002)

10.1016/J.CHEMPHYS.2008.12.015

An investigation of quantum transport by the free-electron network model: Resonance and interference effects

L. Hsu (2009)

10.1021/acs.nanolett.5b04715

A New Approach to Materials Discovery for Electronic and Thermoelectric Properties of Single-Molecule Junctions.

David Zsolt Manrique (2016)

10.1038/35046000

Electronics using hybrid-molecular and mono-molecular devices

C. Joachim (2000)

10.1073/PNAS.0408888102

A single-molecule diode.

Mark Elbing (2005)

10.1119/1.17306

Scattering by a finite periodic potential

D. W. Sprung (1993)

10.1063/1.1699299

Free‐Electron Network Model for Conjugated Systems. I. Theory

K. Ruedenberg (1953)

10.1063/1.4901722

Communication: Finding destructive interference features in molecular transport junctions.

M. G. Reuter (2014)

10.1103/PhysRevA.82.031801

PT-symmetric laser absorber

S. Longhi (2010)

10.1021/acs.chemrev.5b00680

Molecular-Scale Electronics: From Concept to Function.

D. Xiang (2016)

10.1364/JOSA.67.000423

Electromagnetic propagation in periodic stratified media. I. General theory

P. Yeh (1977)

10.1103/PhysRevE.85.057202

Möbius transformations and electronic transport properties of large disorderless networks.

Yu Jiang (2012)

10.1021/nl0608442

Controlling quantum transport through a single molecule.

D. Cardamone (2006)

10.1038/nnano.2013.110

A brief history of molecular electronics.

M. Ratner (2013)

10.1103/PHYSREVB.45.3593

Quantum waveguide theory for mesoscopic structures.

Xia (1992)

10.1103/PhysRevB.65.165401

Density-functional method for nonequilibrium electron transport

M. Brandbyge (2002)

10.1088/0957-4484/25/20/205402

Redox control of thermopower and figure of merit in phase-coherent molecular wires.

V. García-Suárez (2014)

10.1088/0959-7174/14/1/014

Quantum graphs: I. Some basic structures

P. Kuchment (2004)

10.1038/ncomms4225

Photonic Aharonov–Bohm effect in photon–phonon interactions

E. Li (2014)

10.1021/nl8016175

Quantum-interference-controlled molecular electronics.

S. Ke (2008)

10.1088/0034-4885/78/8/082001

Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.

Federico Levi (2015)

10.1063/1.1739935

Free‐Electron Network Model for Conjugated Systems. V. Energies and Electron Distributions in the FE MO Model and in the LCAO MO Model

K. Ruedenberg (1954)

10.1088/1751-8113/48/35/355301

An analytical study of quantum walk through glued-tree graphs

Z. Li (2015)

10.1016/S0301-0104(02)00446-9

First-principles based matrix Green's function approach to molecular electronic devices: general formalism

Yongqiang Xue (2002)

10.1103/PHYSREVB.59.16011

Conductance of molecular wires connected or bonded in parallel

M. Magoga (1999)

10.1021/nn1021499

An all-electric single-molecule motor.

J. S. Seldenthuis (2010)

10.1016/S0009-2614(97)00014-6

An electromechanical amplifier using a single molecule

C. Joachim (1997)

This paper is referenced by