Online citations, reference lists, and bibliographies.
← Back to Search

An Early Transient Water Deficit Reduces Flower Number And Pod Production But Increases Seed Size In Chickpea (Cicer Arietinum L.)

X.-W. Fang, N. C. Turner, F.-M. Li, K. H. M. Siddique

Cite This
Download PDF
Analyze on Scholarcy
Terminal drought is known to decrease flower production, increase flower and pod abortion, and decrease yield of chickpea (Cicer arietinum L.), but the effects of early-season drought have not been evaluated. The influence of an early transient water deficit on flower and pod production and abortion, and seed yield and its components was evaluated in two chickpea cultivars, Rupali, a desi type, and Almaz, a kabuli type. Thirty-six-day-old plants were subjected to: (i) a transient water deficit by withholding water for 35 days, and then rewatered (WS), and (ii) kept well watered (WW) throughout. In the WS treatment the soil water content, leaf relative water content and leaf photosynthetic rate decreased after water was withheld and, following rewatering, recovered to the WW level. Despite the WS treatment being imposed at different phenological stages in the two cultivars, WS reduced flower number per plant by ~50% in Rupali and Almaz, respectively, compared with the WW plants. In WW plants, ~15% of flowers aborted in both cultivars, and 42 and 67% of the pods aborted in Rupali and Almaz, respectively, whereas in WS plants, 18 and 23% of flowers aborted and 27 and 67% of pods aborted in Rupali and Almaz, respectively. While seed growth in WS plants of Rupali and Almaz occurred primarily after the plants were rewatered, the duration of seed growth decreased by 17 and 36 days, the maximum rate of seed filling increased by 3 times and 5 times, and seed size increased by 26 and 16%, respectively, compared with the WW plants. Seed yield per plant in WS plants decreased by 31% in Rupali and 38% in Almaz compared with the WW controls. The early transient water deficit decreased flower production, but improved flower and pod development; increased the rate of seed growth and increased final seed size; and had a smaller effect on seed yield compared with chickpea subjected to terminal drought.