Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

A Statistical View Of Some Chemometrics Regression Tools

lldiko E. Frank, J. Friedman
Published 1993 · Mathematics

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Chemometrics is a field of chemistry that studies the application of statistical methods to chemical data analysis. In addition to borrowing many techniques from the statistics and engineering literatures, chemometrics itself has given rise to several new data-analytical methods. This article examines two methods commonly used in chemometrics for predictive modeling—partial least squares and principal components regression—from a statistical perspective. The goal is to try to understand their apparent successes and in what situations they can be expected to work well and to compare them with other statistical methods intended for those situations. These methods include ordinary least squares, variable subset selection, and ridge regression.
This paper references
10.1111/J.2517-6161.1974.TB00994.X
Cross‐Validatory Choice and Assessment of Statistical Predictions
M. Stone (1974)
10.1080/00401706.1970.10488699
Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation
Donald W. Marquaridt (1970)
" Submodel Selection and Evaluation in Regression I . The x - Fixed Case and Little Bootstrap
L. Breiman (1989)
10.1111/J.2517-6161.1968.TB01505.X
The Choice of Variables in Multiple Regression
D. Lindley (1968)
10.1007/BF01437407
Smoothing noisy data with spline functions
G. Wahba (1975)
10.1080/03610918508812458
Comparison of prediction methods for multicollinear data
T. Næs (1985)
10.1111/J.2517-6161.1972.TB00885.X
Bayes Estimates for the Linear Model
D. Lindley (1972)
10.2307/1267380
Some comments on C_p
C. L. Mallows (1973)
10.1007/978-1-4612-0919-5_30
Estimation with Quadratic Loss
W. James (1992)
10.1214/AOS/1176346150
A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH
J. Rissanen (1983)
10.1080/00401706.1974.10489232
Latent Root Regression Analysis
J. T. Webster (1974)
10.1111/J.2517-6161.1976.TB01573.X
Cross‐Validatory Choice and Assessment of Statistical Predictions (With Discussion)
M. Stone (1976)
10.1080/00401706.1966.10490322
Selection of Variables for Fitting Equations to Data
J. W. Gorman (1966)
10.1214/AOS/1176344136
Estimating the Dimension of a Model
G. Schwarz (1978)
10.1137/0905052
The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses
S. Wold (1984)
Estimation of Principal Components and Related Models by Iterative Least Squares
H. Wold (1966)
10.1002/CEM.1180010105
A theoretical foundation for the PLS algorithm
A. Lorber (1987)
10.2307/1268361
A Note on a Power Generalization of Ridge Regression
Arthur E. Hoer (1975)
10.1080/01621459.1965.10480787
Principal Components Regression in Exploratory Statistical Research
W. Massy (1965)
10.1080/01621459.1988.10478694
Bayesian Variable Selection in Linear Regression
T. Mitchell (1988)
10.1080/03610918808812681
ON THE STRUCTURE OF PARTIAL LEAST SQUARES REGRESSION
I. Helland (1988)
10.1111/J.2517-6161.1990.TB01786.X
Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least s
M. Stone (1990)
10.1016/0169-7439(87)80067-9
Intermediate least squares regression method
I. Frank (1987)
10.1007/bf01404567
Smoothing noisy data with spline functions
P. Craven (1978)
10.2307/2346776
On the Investigation of Alternative Regressions by Principal Component Analysis
D. Hawkins (1973)
10.1093/BIOMET/52.3-4.355
The Bayesian estimation of common parameters from several responses
G. Box (1965)
10.1080/01621459.1980.10477428
A Critique of Some Ridge Regression Methods
G. Smith (1980)



This paper is referenced by
10.1007/S00180-010-0220-6
Nonlinear regression modeling and detecting change points via the relevance vector machine
Shohei Tateishi (2011)
10.6339/JDS.2003.01(3).134
Analysis Methods for Supersaturated Design: Some Comparisons
R. Li (2003)
Understanding the visual cortex by using classification techniques. (Améliorer la compréhension du cortex visuel à l'aide de techniques de classification)
V. Michel (2010)
10.1145/1577069.1577070
Exploring Strategies for Training Deep Neural Networks
H. Larochelle (2009)
10.1016/j.jmva.2013.02.010
Generalized F test for high dimensional linear regression coefficients
Siyang Wang (2013)
10.1214/10-AOS798
Sure independence screening in generalized linear models with NP-dimensionality
J. Fan (2010)
10.1002/CEM.727
Combining bilinear modelling and ridge regression
M. Høy (2002)
Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion.
R. Ball (2001)
Statistical models for food authenticity
D. Toher (2009)
Essays in Behavioral Economics and Innovation
D. Gilchrist (2015)
10.1002/cem.2889
High‐dimensional QSAR classification model for anti‐hepatitis C virus activity of thiourea derivatives based on the sparse logistic regression model with a bridge penalty
Z. Algamal (2017)
Nowcasting with dynamic masking
Jonas Hallgren (2016)
10.1080/10618600.2016.1195273
Locally Sparse Estimator for Functional Linear Regression Models
Zhenhua Lin (2017)
10.1111/SJOS.12195
A Necessary Condition for the Strong Oracle Property
Yongdai Kim (2016)
Regularized and robust regression methods for high dimensional data
Hussein Hashem (2014)
10.1111/1467-9469.00201
Shrinkage Structure of Partial Least Squares
O. C. Lingjærde (2000)
Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
F. Asadi (2015)
Conditional sure independence screening Link
A. Verhasselt (2016)
10.1517/14622416.3.2.157
Classification and prediction in pharmacogenetics--context, construction and validation.
U. Mansmann (2002)
10.1016/J.CHEMOLAB.2012.12.001
Feature selection for functional PLS
Athanassios Kondylis (2013)
10.1111/RSSB.12018
Envelopes and partial least squares regression
R. Cook (2013)
10.1139/CJB-2016-0009
Improving plant biomass estimation in the field using partial least squares regression and ridge regression
Brian M. Ohsowski (2016)
10.1007/978-3-642-35494-6_9
Least Squares Estimation in High Dimensional Sparse Heteroscedastic Models
H. Dette (2013)
10.1111/J.0272-4332.2003.00390.X
Prediction of human blood: air partition coefficient: a comparison of structure-based and property-based methods.
S. Basak (2003)
High-Dimensional Bayesian Multi-Objective Optimization
David Gaudrie (2019)
10.1198/jasa.2011.ap10194
High-Dimensional ODEs Coupled With Mixed-Effects Modeling Techniques for Dynamic Gene Regulatory Network Identification
Tao Lu (2011)
Higher-Order Feature Synthesis for Insurance Scoring Models
C. Dugas (2009)
10.1007/978-3-642-21551-3_23
Non) Linear Regression Modeling
P. Cízek (2009)
10.1080/00032710500315904
Multivariate Calibration, an Overview
J. Kalivas (2005)
Régression sur variable fonctionnelle : estimation, tests de structure et applications
L. Delsol (2008)
10.1016/j.csda.2003.11.004
Generation of prediction optimal projection on latent factors by a stochastic search algorithm
K. Luebke (2004)
10.1080/01621459.2014.931859
Index Models for Sparsely Sampled Functional Data
P. Radchenko (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar