Please confirm you are human
(

__Sign Up__for free to never see this)
← Back to Search

# A Statistical View Of Some Chemometrics Regression Tools

lldiko E. Frank, J. Friedman

Published 1993 · Mathematics

Chemometrics is a field of chemistry that studies the application of statistical methods to chemical data analysis. In addition to borrowing many techniques from the statistics and engineering literatures, chemometrics itself has given rise to several new data-analytical methods. This article examines two methods commonly used in chemometrics for predictive modeling—partial least squares and principal components regression—from a statistical perspective. The goal is to try to understand their apparent successes and in what situations they can be expected to work well and to compare them with other statistical methods intended for those situations. These methods include ordinary least squares, variable subset selection, and ridge regression.

This paper references

10.1111/J.2517-6161.1974.TB00994.X

Cross‐Validatory Choice and Assessment of Statistical Predictions

M. Stone (1974)

10.1080/00401706.1970.10488699

Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation

Donald W. Marquaridt (1970)

" Submodel Selection and Evaluation in Regression I . The x - Fixed Case and Little Bootstrap

L. Breiman (1989)

10.1111/J.2517-6161.1968.TB01505.X

The Choice of Variables in Multiple Regression

D. Lindley (1968)

10.1007/BF01437407

Smoothing noisy data with spline functions

G. Wahba (1975)

10.1080/03610918508812458

Comparison of prediction methods for multicollinear data

T. Næs (1985)

10.1111/J.2517-6161.1972.TB00885.X

Bayes Estimates for the Linear Model

D. Lindley (1972)

10.2307/1267380

Some comments on C_p

C. L. Mallows (1973)

10.1007/978-1-4612-0919-5_30

Estimation with Quadratic Loss

W. James (1992)

10.1214/AOS/1176346150

A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH

J. Rissanen (1983)

10.1080/00401706.1974.10489232

Latent Root Regression Analysis

J. T. Webster (1974)

10.1111/J.2517-6161.1976.TB01573.X

Cross‐Validatory Choice and Assessment of Statistical Predictions (With Discussion)

M. Stone (1976)

10.1080/00401706.1966.10490322

Selection of Variables for Fitting Equations to Data

J. W. Gorman (1966)

10.1214/AOS/1176344136

Estimating the Dimension of a Model

G. Schwarz (1978)

10.1137/0905052

The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses

S. Wold (1984)

Estimation of Principal Components and Related Models by Iterative Least Squares

H. Wold (1966)

10.1002/CEM.1180010105

A theoretical foundation for the PLS algorithm

A. Lorber (1987)

10.2307/1268361

A Note on a Power Generalization of Ridge Regression

Arthur E. Hoer (1975)

10.1080/01621459.1965.10480787

Principal Components Regression in Exploratory Statistical Research

W. Massy (1965)

10.1080/01621459.1988.10478694

Bayesian Variable Selection in Linear Regression

T. Mitchell (1988)

10.1080/03610918808812681

ON THE STRUCTURE OF PARTIAL LEAST SQUARES REGRESSION

I. Helland (1988)

10.1111/J.2517-6161.1990.TB01786.X

Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least s

M. Stone (1990)

10.1016/0169-7439(87)80067-9

Intermediate least squares regression method

I. Frank (1987)

10.1007/bf01404567

Smoothing noisy data with spline functions

P. Craven (1978)

10.2307/2346776

On the Investigation of Alternative Regressions by Principal Component Analysis

D. Hawkins (1973)

10.1093/BIOMET/52.3-4.355

The Bayesian estimation of common parameters from several responses

G. Box (1965)

10.1080/01621459.1980.10477428

A Critique of Some Ridge Regression Methods

G. Smith (1980)

This paper is referenced by

10.1007/S00180-010-0220-6

Nonlinear regression modeling and detecting change points via the relevance vector machine

Shohei Tateishi (2011)

10.6339/JDS.2003.01(3).134

Analysis Methods for Supersaturated Design: Some Comparisons

R. Li (2003)

Understanding the visual cortex by using classification techniques. (Améliorer la compréhension du cortex visuel à l'aide de techniques de classification)

V. Michel (2010)

10.1145/1577069.1577070

Exploring Strategies for Training Deep Neural Networks

H. Larochelle (2009)

10.1016/j.jmva.2013.02.010

Generalized F test for high dimensional linear regression coefficients

Siyang Wang (2013)

10.1214/10-AOS798

Sure independence screening in generalized linear models with NP-dimensionality

J. Fan (2010)

10.1002/CEM.727

Combining bilinear modelling and ridge regression

M. Høy (2002)

Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion.

R. Ball (2001)

Statistical models for food authenticity

D. Toher (2009)

Essays in Behavioral Economics and Innovation

D. Gilchrist (2015)

10.1002/cem.2889

High‐dimensional QSAR classification model for anti‐hepatitis C virus activity of thiourea derivatives based on the sparse logistic regression model with a bridge penalty

Z. Algamal (2017)

Nowcasting with dynamic masking

Jonas Hallgren (2016)

10.1080/10618600.2016.1195273

Locally Sparse Estimator for Functional Linear Regression Models

Zhenhua Lin (2017)

10.1111/SJOS.12195

A Necessary Condition for the Strong Oracle Property

Yongdai Kim (2016)

Regularized and robust regression methods for high dimensional data

Hussein Hashem (2014)

10.1111/1467-9469.00201

Shrinkage Structure of Partial Least Squares

O. C. Lingjærde (2000)

Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

F. Asadi (2015)

Conditional sure independence screening Link

A. Verhasselt (2016)

10.1517/14622416.3.2.157

Classification and prediction in pharmacogenetics--context, construction and validation.

U. Mansmann (2002)

10.1016/J.CHEMOLAB.2012.12.001

Feature selection for functional PLS

Athanassios Kondylis (2013)

10.1111/RSSB.12018

Envelopes and partial least squares regression

R. Cook (2013)

10.1139/CJB-2016-0009

Improving plant biomass estimation in the field using partial least squares regression and ridge regression

Brian M. Ohsowski (2016)

10.1007/978-3-642-35494-6_9

Least Squares Estimation in High Dimensional Sparse Heteroscedastic Models

H. Dette (2013)

10.1111/J.0272-4332.2003.00390.X

Prediction of human blood: air partition coefficient: a comparison of structure-based and property-based methods.

S. Basak (2003)

High-Dimensional Bayesian Multi-Objective Optimization

David Gaudrie (2019)

10.1198/jasa.2011.ap10194

High-Dimensional ODEs Coupled With Mixed-Effects Modeling Techniques for Dynamic Gene Regulatory Network Identification

Tao Lu (2011)

Higher-Order Feature Synthesis for Insurance Scoring Models

C. Dugas (2009)

10.1007/978-3-642-21551-3_23

Non) Linear Regression Modeling

P. Cízek (2009)

10.1080/00032710500315904

Multivariate Calibration, an Overview

J. Kalivas (2005)

Régression sur variable fonctionnelle : estimation, tests de structure et applications

L. Delsol (2008)

10.1016/j.csda.2003.11.004

Generation of prediction optimal projection on latent factors by a stochastic search algorithm

K. Luebke (2004)

10.1080/01621459.2014.931859

Index Models for Sparsely Sampled Functional Data

P. Radchenko (2015)

See more