Online citations, reference lists, and bibliographies.

Global Double Roman Domination In Graphs

Zehui Shao, S. M. Sheikholeslami, S. Nazari-Moghaddam, S. Wang
Published 2019 · Mathematics

Cite This
Download PDF
Analyze on Scholarcy
Share
Abstract A double Roman dominating function (DRDF) on a graph G = (V, E) is a function f : V(G) → {0, 1, 2, 3} having the property that if f(v) = 0, then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with f(w) = 3, and if f(v) = 1, then vertex v must have at least one neighbor w with f(w) ≥ 2. A DRDF f is called a global double Roman dominating function (GDRDF) if f is also a DRDF of the complement of G. The weight of a GDRDF is the sum of its function value over all vertices. The global double Roman domination number of G, denoted by γgdR(G), is the minimum weight of a GDRDF on G. In this paper, we initiate the study of the global double Roman domination number. We obtain some properties of global double Roman domination number.
This paper references
10.1016/j.dam.2015.07.014
Global Roman domination in graphs
P. Roushini Leely Pushpam (2016)
10.37236/2595
Roman Domination Number of the Cartesian Products of Paths and Cycles
P. Pavlic (2012)
10.1080/09720529.2012.10698378
Roman domination in unicyclic graphs
P. Roushini Leely Pushpam (2012)
10.1007/s10878-012-9482-y
Roman domination on strongly chordal graphs
C. Liu (2013)
10.18514/MMN.2017.1267
GLOBAL RAINBOW DOMINATION IN GRAPHS
Jafar Amjadi (2017)
The global domination number of a graph
E. Sampathkumar (1989)
10.1137/080733085
Roman Domination on 2-Connected Graphs
C. Liu (2012)
10.21136/CMJ.2017.0068-16
A note on the independent domination number versus the domination number in bipartite graphs
Shaohui Wang (2016)
10.1016/j.ipl.2018.01.004
Double Roman domination in trees
X. Zhang (2018)
10.1201/9781482246582
Fundamentals of domination in graphs
T. Haynes (1998)
10.1007/s00373-010-0992-z
On Roman, Global and Restrained Domination in Graphs
Vadim E. Zverovich (2011)
On Roman
V. Zverovich (2011)
The total global domination number of a graph
V. R. Kulli (1996)
10.1016/j.disc.2008.09.043
On the Roman domination number of a graph
O. Favaron (2009)
10.22108/TOC.2014.4989
Global minus domination in graphs
Maryam Atapour (2014)
10.1016/j.disc.2003.06.004
Roman domination in graphs
E. Cockayne (2004)
10.1007/s00373-014-1415-3
Global Roman Domination in Trees
M. Atapour (2015)
10.1016/j.disc.2011.12.021
Upper bounds on Roman domination numbers of graphs
C. Liu (2012)
10.1016/j.dam.2017.06.014
On the double Roman domination in graphs
H. Ahangar (2017)
10.1038/SCIENTIFICAMERICAN1299-136
Defend the Roman Empire
I. Stewart (1999)
The Global Connected Domination In Graphs
Dejan Delic (2014)
10.1016/j.dam.2016.03.017
Double Roman domination
R. A. Beeler (2016)
10.2298/AADM130813017G
Roman domination in Cartesian product graphs and strong product graphs
I. G. Yero (2011)
10.1515/9783111548050-035
Z
Axel M. Gressner (2012)
10.7151/dmgt.1474
Fractional global domination in graphs
S. Arumugam (2010)
On the Roman reinforcement in graphs
N. Rad (2014)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar