Online citations, reference lists, and bibliographies.
← Back to Search

Locomotion And The Phylogeny Of The Metazoa

R. Clark
Published 1981 · Biology

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Abstract Among the lower Metazoa, the basic structure of the animals sets limits to the locomotory techniques available to them and to the habitats they can occupy. Small but critical structural changes overcome these limitations and once achieved they have resulted in major phyletic radiations. Small organisms up to 1–2 mm in length can, by ciliary action, swim, creep on the substratum or creep in it as a meiofauna. Once this size is much exceeded only creeping on the substratum is possible. The largest of the earliest Metazoa exceeded this limit and formed the basis of an important radiation of surface creeping forms including Turbellaria, Nemertea and Mollusca, the larger members of which supplement or replace ciliary locomotion by muscular activity. A cellular hydrostatic skeleton permits reversible changes of shape produced by contraction of the body-wall muscles in small organisms, but with increasing size, particularly as structural elements are developed to conserve the shape of the animal, such a...
This paper references
10.2307/1536576
CILIARY AND MUSCULAR LOCOMOTION IN THE GASTROPOD GENUS POLINICES
Manton Copeland (1922)
Direct Peristaltic Progression and the Functional Significance of the Dermal Connective Tissues During Burrowing in the Polychaete Polyphysia Crassa (Oersted)
H. Elder (1973)
10.1007/BF02989557
Bericht über die Jahresversammlung der Paläontologischen Gesellschaft in Graz (Österreich) vom 11. bis 14. September 1972
H. W. Flügel (1973)
10.1111/j.1469-185X.1958.tb01260.x
THE HYDROSTATIC SKELETON IN THE INVERTEBRATES
G. Chapman (1958)
10.1073/PNAS.3.12.691
The Means of Locomotion in Planarians.
C. Stringer (1917)
10.2307/1540146
DISTRIBUTION AND FUNCTIONS OF ELASTIC FIBERS IN THE INVERTEBRATES.
H. Elder (1973)
Studies In Animal Locomotion: VII. Locomotory Reflexes In The Earthworm
J. Gray (1938)
A New Species of Saccocirrus (Archiannelida) from the West Coast of North America
J. S. Gray (1969)
10.2307/3225629
The origin and early evolution of animals
Earl D. Hanson (1977)
10.1016/B978-0-12-395537-1.50007-5
CHAPTER 1 – Systematics and Phylogeny: Annelida, Echiura, Sipuncula
R. Clark (1969)
10.2307/2412988
The Arthropoda: Habits, Functional Morphology, and Evolution
N. I. Platnick (1978)
Memoirs: The Habits and Early Development of Cerebratulus Lacteus (Verrill): A Contribution of Physiological Morphology
C. B. Wilson (1900)
10.1111/j.1469-185X.1964.tb00948.x
THE INTERSTITIAL FAUNA OF MARINE SAND
B. Swedmark (1964)
10.1111/J.1095-8312.1950.TB00584.X
LOCOMOTION IN BRITISH TERRESTRIAL NEMERTINES AND PLANARIANS: WITH A DISCUSSION ON THE IDENTITY OF RHYNCHODEMUS BILINEATUS (Mecznikow) IN BRITAIN, AND ON THE NAME FASCIOLA TERRESTRIS O. F. Müller
C. F. A. Pantin (1950)
10.1038/228383B0
Skeletons of Lumbricus terrestris L. and Arenicola marina (L.)
MALCOLM K. Seymour (1970)
Memoirs: Contributions to a Knowledge of British Marine Turbellaria
F. W. Gamble (1893)
Studies in Animal Locomotion: VIII. The Kinetics of Locomotion of Nereis diversicolor
J. Gray (1939)
PRESSURE DIFFERENCE IN ADJACENT SEGMENTS AND MOVEMENT OF SEPTA IN EARTHWORM LOCOMOTION
M. Seymour (1976)
Dynamics in Metazoan Evolution: The Origin of the Coelom and Segments.
R. B. Clark (1964)
The locomotion of soft-bodied animals
E. R. Trueman (1975)
10.1016/B978-0-08-018767-9.50042-1
UNDULATORY SWIMMING IN POLYCHAETES
R. Clark (1976)
Locomotion and Coelomic Pressure in Lumbricus Terrestris L
M. Seymour (1969)
Ciliary propulsion of objects in tubes: wall drag on swimming Tetrahymena (Ciliata) in the presence of mucin and other long-chain polymers.
H. Winet (1976)
10.1098/RSTB.1975.0033
The enigmatic animal Opabinia regalis, middle Cambrian, Burgess Shale, British Columbia
H. Whittington (1975)
Studies in Animal Locomotion
J. Gray (1936)
Locomotion of the Limpet, Patella Vulgata L
H. Jones (1970)
10.1016/0022-0981(74)90021-5
Adaptive design of locomotion and foot form in prosobranch gastropods
S. Miller (1974)
10.1139/Z78-290
Ciliation and function of the food-collecting and waste-rejecting organs of lophophorates
T. H. Gilmour (1978)
10.2307/2412250
Embryology and Phylogeny in Annelids and Arthropods
R. Smith (1973)
The Role of the Coelomic Fluid in the Movements of Earthworms
G. Newell (1950)



This paper is referenced by
10.1080/08120099.2018.1470110
You can get anything you want from Alice's Restaurant Bed: exceptional preservation and an unusual fossil assemblage from a newly excavated bed (Ediacara Member, Nilpena, South Australia)
S. D. Evans (2020)
10.1111/J.1744-7410.2007.00087.X
F-actin framework in Spirorbis cf. spirorbis (Annelida: Serpulidae): phalloidin staining investigated and reconstructed by cLSM
Jens Rüchel (2007)
10.4202/app.00048.2013
The Youngest Ctenocystoids from the Upper Ordovician of the United Kingdom and the Evolution of the Bilateral Body Plan in Echinoderms
I. A. Rahman (2014)
10.1093/icb/icj053
Evolution of body wall musculature.
G. Purschke (2006)
10.1186/1742-9994-5-1
Muscle formation during embryogenesis of the polychaete Ophryotrocha diadema (Dorvilleidae) – new insights into annelid muscle patterns
Annette Bergter (2007)
10.1016/S0968-0004(99)01470-X
The origin and evolution of segmentation.
G. K. Davis (1999)
10.1073/pnas.1815655116
Coherent directed movement toward food modeled in Trichoplax, a ciliated animal lacking a nervous system
C. L. Smith (2019)
10.1111/J.1744-7410.2010.00191.X
Musculature in polychaetes: comparison of Myrianida prolifera (Syllidae) and Sphaerodoropsis sp. (Sphaerodoridae)
A. Filippova (2010)
10.1016/B978-0-12-751411-6.50016-3
9 – The Arrangement and Function of Molluscan Muscle
W. Kier (1988)
10.1002/JMOR.10532
Pattern of body‐wall muscle differentiation during embryonic development of Enchytraeus coronatus (Annelida: Oligochaeta; Enchytraeidae)
Annette Bergter (2007)
10.1007/s10750-004-1409-x
Muscular system in polychaetes (Annelida)
A. Tzetlin (2004)
10.1002/JMOR.10548
The arrangement and function of octopus arm musculature and connective tissue
W. Kier (2007)
10.1007/s00435-013-0203-6
Immunohistochemical and ultrastructural analysis of the muscular and nervous systems in the interstitial polychaete Polygordius appendiculatus (Annelida)
Christine Lehmacher (2013)
Hydrostatic skeletons in the Crustacea: Support during molting in an aquatic and a terrestrial crab
Jennifer R. A. Taylor (2007)
10.1111/gbi.12351
Slime travelers: Early evidence of animal mobility and feeding in an organic mat world.
S. D. Evans (2019)
10.1111/j.1525-142X.2007.00184.x
Evolutionary aspects of pattern formation during clitellate muscle development
Annette Bergter (2007)
10.1111/J.1096-3642.1985.TB01178.X
Tongues, tentacles and trunks: the biomechanics of movement in muscular‐hydrostats
W. Kier (1985)
10.1046/J.1463-6395.2002.00104.X
On the absence of circular muscle elements in the body wall of Dysponetus pygmaeus (Chrysopetalidae, Polychaeta, Annelida)
A. Tzetlin (2002)
10.3389/fcell.2016.00010
The Musculature of Coleoid Cephalopod Arms and Tentacles
W. Kier (2016)
10.1073/pnas.2001045117
Discovery of the oldest bilaterian from the Ediacaran of South Australia
S. D. Evans (2020)
10.1007/1-4020-3240-4_7
Muscular system in polychaetes (Annelida)
A. Tzetlin (2005)
10.1007/s00435-004-0106-7
Reconstruction of the musculature of Magelona cf. mirabilis (Magelonidae) and Prionospio cirrifera (Spionidae) (Polychaeta, Annelida) by phalloidin labeling and cLSM
A. Filippova (2004)
10.1186/1742-9994-2-11
Shape based assignment tests suggest transgressive phenotypes in natural sculpin hybrids (Teleostei, Scorpaeniformes, Cottidae)
A. Nolte (2005)
10.1016/S0962-8924(99)01663-3
The origin and evolution of segmentation
G. K. Davis (1999)
10.1007/978-1-4757-0740-3_11
Sediment-Mediated Biological Disturbance and the Evolution of Marine Benthos
C. W. Thayer (1983)
10.1016/S0168-9525(99)01875-2
The origin and evolution of segmentation
G. K. Davis (1999)
10.1080/11250009809386723
Metameric features in the Vendian metazoans
M. Fedonkin (1998)
Semantic Scholar Logo Some data provided by SemanticScholar